1 Dalian Huarui Heavy Industry Group Co., Ltd., Dalian 116013, Liaoning, China 2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China 3 School of Aeronautical Maintenance Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China
It is very important to apply an effective method to predict the crystallization degree of laser 3D printed bulk metallic glasses (BMGs) for selecting and optimizing the processing parameters of laser 3D printing. In the present study, beginning with the kinetics of crystallization of amorphous alloys, the crystallization activation energy and Arrhenius factor were obtained by testing the characteristics of the temperature of the amorphous alloy under different heating rates, then a novel method of predicting the volume fraction of crystallization for the metallic glass produced by laser 3D printing was proposed combined with the finite element simulation technology. The validity of the method was verified by using Zr50Ti5Cu27Ni10Al8(Zr50) amorphous alloy as the model system. The result shows that the volume fraction of the crystalline phase of the single-track Zr50 BMG obtained by this method is 1.23%, which is very close to the experimentally obtained crystallization phase volume fraction of 1.65%. This strongly proves the effectiveness of the theoretical prediction method for the crystallization volume fraction of laser 3D printing BMGs.
WANG W H , DONG C , SHEK C H . Bulk metallic glasses[J]. Materials Science and Engineering:R, 2004, 44 (2/3): 45- 89.
2
INOUE A , TAKEUCHI A . Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59 (6): 2243- 2267.
doi: 10.1016/j.actamat.2010.11.027
SHAN S F , TIAN X S , YU T , et al. Nano-crystallization and mechanical properties of Y addition Ti40Zr25Cu9Ni8Be18 amorphous alloy[J]. Journal of Materials Engineering, 2018, 46 (7): 88- 93.
ZHENG Y F , WU Y H . Revolutionizing metallic biomaterials[J]. Acta Metallurgica Sinica, 2017, 53 (3): 257- 297.
7
HUANG Y , KHONG J C , CONNOLLEY T , et al. The onset of plasticity of a Zr-based bulk metallic glass[J]. International Journal of Plasticity, 2014, 60 (9): 87- 100.
8
LU Y , HUANG Y , SHEN J , et al. Effect of Co addition on the shear viscosity of Fe-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2014, 403, 62- 66.
doi: 10.1016/j.jnoncrysol.2014.07.012
9
CHEN C , PANG S , CHENG Y , et al. A centimeter-size Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1, bulk metallic glass with high mixing entropy designed by multi-substitution[J]. Journal of Non-Crystalline Solids, 2015, 410, 39- 42.
doi: 10.1016/j.jnoncrysol.2014.11.032
10
WANG L , FELICELLI S , GOOROOCHURN Y , et al. Optimization of the LENS® process for steady molten pool size[J]. Materials Science and Engineering:A, 2008, 474 (1/2): 148- 156.
doi: 10.1016/j.msea.2007.04.119
11
CHANDE T , MAZUMDER J . Estimating effects of processing conditions and variable properties upon pool shape, cooling rates, and absorption coefficient in laser welding[J]. Journal of Applied Physiology, 1984, 56 (7): 1981- 1986.
doi: 10.1063/1.334231
ZHANG Y J , ZHANG J L , ZHANG L , et al. Research progress on 3D printed metallic glasses materials, processing and property[J]. Journal of Materials Engineering, 2018, 46 (7): 12- 18.
13
SUN H , FLORES K M . Spherulitic crystallization mechanism of a Zr-based bulk metallic glass during laser processing[J]. Intermetallics, 2013, 43 (12): 53- 59.
14
ZHENG B , ZHOU Y , SMUGERESKY J E , et al. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping[J]. Metallurgical Materials Transactions A, 2009, 40 (5): 1235- 1245.
doi: 10.1007/s11661-009-9828-y
15
YE X , BAE H , SHIN Y C , et al. In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions A, 2015, 46 (9): 4316- 4325.
doi: 10.1007/s11661-015-3047-5
16
PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
CHEN M H , ZHU H M , WANG X L . Research progress on laser cladding amorphous coatings on metallic substrates[J]. Journal of Materials Engineering, 2017, 45 (1): 120- 128.
18
LU Y , HUANG Y , WU J . Laser additive manufacturing of structural-graded bulk metallic glass[J]. Journal of Alloys and Compounds, 2018, 766, 506- 510.
doi: 10.1016/j.jallcom.2018.06.259
19
OUYANG D , LI N , LIU L . Structural heterogeneity in 3D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys and Compounds, 2018, 740, 603- 609.
doi: 10.1016/j.jallcom.2018.01.037
20
ZHANG C , WANG W , LI Y C , et al. 3D printing of Fe-based bulk metallic glasses and composites with large dimension and enhanced toughness by thermal spraying[J]. Journal of Materials Chemistry A, 2018, 6 (16): 6800- 6805.
doi: 10.1039/C8TA00405F
ZHANG Y Y , LIN X , WEI L , et al. Crystallization behavior of laser solid forming of annealed Zr55Cu30Al10Ni5 powder[J]. Acta Metallurgica Sinica, 2017, 53 (7): 824- 832.
22
KETKAEW J , LIU Z , CHEN W , et al. Critical crystallization for embrittlement in metallic glasses[J]. Physical Review Letters, 2015, 115 (26): 265502.
doi: 10.1103/PhysRevLett.115.265502
23
SHETE M K , SINGH I , NARASIMHAN R , et al. Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites[J]. Scripta Materialia, 2016, 124, 51- 55.
doi: 10.1016/j.scriptamat.2016.06.020
24
CHEN B , SHI T , LI M , et al. Crystallization of Zr55Cu30Al10Ni5 bulk metallic glass in laser welding:simulation and experiment[J]. Advanced Engineering Materials, 2015, 17 (4): 483- 490.
doi: 10.1002/adem.201400145
25
LU Y , ZHANG H , LI H , et al. Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2017, 461, 12- 17.
doi: 10.1016/j.jnoncrysol.2017.01.038
GONG Y B , WANG S L , LI H X , et al. Effect of pulse width on microstructure and hardness of FeSiB coatings by laser cladding[J]. Journal of Materials Engineering, 2018, 46 (3): 74- 80.
27
KEMPEN A T W , SOMMER F , MITTEMEIJER E J . Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth[J]. Journal of Materials Science, 2002, 37 (7): 1321- 1332.
doi: 10.1023/A:1014556109351
28
KISSINGER H E . Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57 (4): 217- 221.
doi: 10.6028/jres.057.026