Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 133-138    DOI: 10.11868/j.issn.1001-4381.2019.000088
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光3D打印非晶合金晶化体积分数的理论预测
曲丽丹1,2, 韩斌慧3, 吕云卓2,*(), 白钰枝3
1 大连华锐重工集团股份有限公司, 辽宁 大连 116013
2 大连交通大学 材料科学与工程学院, 辽宁 大连 116028
3 西安航空职业技术学院 航空维修工程学院, 西安 710089
Theoretical prediction of crystallization volume fraction for laser 3D printing of metallic glasses
Li-dan QU1,2, Bin-hui HAN3, Yun-zhuo LYU2,*(), Yu-zhi BAI3
1 Dalian Huarui Heavy Industry Group Co., Ltd., Dalian 116013, Liaoning, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
3 School of Aeronautical Maintenance Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China
全文: PDF(2554 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用一种有效的方法预测激光3D打印块状非晶合金的晶化程度,对于激光3D工艺参数的选择与优化至关重要。本工作从非晶合金的晶化动力学入手,通过测试不同加热速率下非晶合金的特征温度,获得非晶合金发生晶化所要克服的晶化激活能和Arrhenius指前因子,并结合有限元模拟技术,提出了一种预测激光3D打印非晶合金晶化体积分数的方法。以Zr50Ti5Cu27Ni10Al8(Zr50)非晶合金为模型体系,验证了该方法的有效性。结果表明:利用该方法获得的激光3D打印单道Zr50非晶合金晶化相体积分数为1.23%,与实验得到的晶化相体积分数1.65%较接近,这有力地证明了提出的激光3D打印非晶合金晶化体积分数的理论预测方法是可行的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曲丽丹
韩斌慧
吕云卓
白钰枝
关键词 非晶合金激光3D打印晶化理论预测    
Abstract

It is very important to apply an effective method to predict the crystallization degree of laser 3D printed bulk metallic glasses (BMGs) for selecting and optimizing the processing parameters of laser 3D printing. In the present study, beginning with the kinetics of crystallization of amorphous alloys, the crystallization activation energy and Arrhenius factor were obtained by testing the characteristics of the temperature of the amorphous alloy under different heating rates, then a novel method of predicting the volume fraction of crystallization for the metallic glass produced by laser 3D printing was proposed combined with the finite element simulation technology. The validity of the method was verified by using Zr50Ti5Cu27Ni10Al8(Zr50) amorphous alloy as the model system. The result shows that the volume fraction of the crystalline phase of the single-track Zr50 BMG obtained by this method is 1.23%, which is very close to the experimentally obtained crystallization phase volume fraction of 1.65%. This strongly proves the effectiveness of the theoretical prediction method for the crystallization volume fraction of laser 3D printing BMGs.

Key wordsmetallic glass    laser 3D printing    crystallization    theoretical prediction
收稿日期: 2019-01-25      出版日期: 2020-07-21
中图分类号:  TG139+.8  
基金资助:国家自然科学基金资助项目(51671042);国家自然科学基金资助项目(51401041);西安航空职业技术学院2018年综合科研项目(18XHZH-01)
通讯作者: 吕云卓     E-mail: luyz@djtu.edu.cn
作者简介: 吕云卓(1985-), 男, 副教授, 博士, 研究方向为金属材料激光3D打印, 联系地址:辽宁省大连市沙河口区黄河路794号大连交通大学材料科学与工程学院313(116028), E-mail:luyz@djtu.edu.cn
引用本文:   
曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
Li-dan QU, Bin-hui HAN, Yun-zhuo LYU, Yu-zhi BAI. Theoretical prediction of crystallization volume fraction for laser 3D printing of metallic glasses. Journal of Materials Engineering, 2020, 48(7): 133-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000088      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/133
Fig.1  不同升温速率下Zr50非晶合金的DSC曲线
Fig.2  Zr50非晶合金的Tx-1与ln(Tx2/B)的关系曲线
Fig.3  不同等温温度下Zr50非晶合金的等温DSC曲线
Fig.4  不同等温温度下Zr50非晶合金晶化体积分数x′与等温时间t的关系
Fig.5  不同等温温度下Zr50非晶合金ln[-ln(1-x′)]与lnt关系
Fig.6  激光3D打印单道Zr50非晶合金截面SEM形貌(a)以及建立的有限元模型(b)
Fig.7  有限元模拟得到的不同时刻激光3D打印温度场分布(a)t=0.03 s; (b)t=0.1 s; (c)t=0.2 s; (d)t=0.5 s; (e)t=1.0 s
Fig.8  垂直激光移动方向截面平均热循环曲线
1 WANG W H , DONG C , SHEK C H . Bulk metallic glasses[J]. Materials Science and Engineering:R, 2004, 44 (2/3): 45- 89.
2 INOUE A , TAKEUCHI A . Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59 (6): 2243- 2267.
doi: 10.1016/j.actamat.2010.11.027
3 山圣峰, 田晓生, 于涛, 等. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46 (7): 88- 93.
3 SHAN S F , TIAN X S , YU T , et al. Nano-crystallization and mechanical properties of Y addition Ti40Zr25Cu9Ni8Be18 amorphous alloy[J]. Journal of Materials Engineering, 2018, 46 (7): 88- 93.
4 KRUZIC J J . Bulk metallic glasses as structural materials:a review[J]. Advanced Engineering Materials, 2016, 18 (8): 1308- 1331.
doi: 10.1002/adem.201600066
5 梁秀兵, 程江波, 冯源, 等. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45 (9): 1- 12.
5 LIANG X B , CHENG J B , FENG Y , et al. Research progress on Fe-based amorphous coatings[J]. Journal of Materials Engineering, 2017, 45 (9): 1- 12.
6 郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53 (3): 257- 297.
6 ZHENG Y F , WU Y H . Revolutionizing metallic biomaterials[J]. Acta Metallurgica Sinica, 2017, 53 (3): 257- 297.
7 HUANG Y , KHONG J C , CONNOLLEY T , et al. The onset of plasticity of a Zr-based bulk metallic glass[J]. International Journal of Plasticity, 2014, 60 (9): 87- 100.
8 LU Y , HUANG Y , SHEN J , et al. Effect of Co addition on the shear viscosity of Fe-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2014, 403, 62- 66.
doi: 10.1016/j.jnoncrysol.2014.07.012
9 CHEN C , PANG S , CHENG Y , et al. A centimeter-size Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1, bulk metallic glass with high mixing entropy designed by multi-substitution[J]. Journal of Non-Crystalline Solids, 2015, 410, 39- 42.
doi: 10.1016/j.jnoncrysol.2014.11.032
10 WANG L , FELICELLI S , GOOROOCHURN Y , et al. Optimization of the LENS® process for steady molten pool size[J]. Materials Science and Engineering:A, 2008, 474 (1/2): 148- 156.
doi: 10.1016/j.msea.2007.04.119
11 CHANDE T , MAZUMDER J . Estimating effects of processing conditions and variable properties upon pool shape, cooling rates, and absorption coefficient in laser welding[J]. Journal of Applied Physiology, 1984, 56 (7): 1981- 1986.
doi: 10.1063/1.334231
12 章媛洁, 张金良, 张磊, 等. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46 (7): 12- 18.
12 ZHANG Y J , ZHANG J L , ZHANG L , et al. Research progress on 3D printed metallic glasses materials, processing and property[J]. Journal of Materials Engineering, 2018, 46 (7): 12- 18.
13 SUN H , FLORES K M . Spherulitic crystallization mechanism of a Zr-based bulk metallic glass during laser processing[J]. Intermetallics, 2013, 43 (12): 53- 59.
14 ZHENG B , ZHOU Y , SMUGERESKY J E , et al. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping[J]. Metallurgical Materials Transactions A, 2009, 40 (5): 1235- 1245.
doi: 10.1007/s11661-009-9828-y
15 YE X , BAE H , SHIN Y C , et al. In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions A, 2015, 46 (9): 4316- 4325.
doi: 10.1007/s11661-015-3047-5
16 PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
17 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45 (1): 120- 128.
17 CHEN M H , ZHU H M , WANG X L . Research progress on laser cladding amorphous coatings on metallic substrates[J]. Journal of Materials Engineering, 2017, 45 (1): 120- 128.
18 LU Y , HUANG Y , WU J . Laser additive manufacturing of structural-graded bulk metallic glass[J]. Journal of Alloys and Compounds, 2018, 766, 506- 510.
doi: 10.1016/j.jallcom.2018.06.259
19 OUYANG D , LI N , LIU L . Structural heterogeneity in 3D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys and Compounds, 2018, 740, 603- 609.
doi: 10.1016/j.jallcom.2018.01.037
20 ZHANG C , WANG W , LI Y C , et al. 3D printing of Fe-based bulk metallic glasses and composites with large dimension and enhanced toughness by thermal spraying[J]. Journal of Materials Chemistry A, 2018, 6 (16): 6800- 6805.
doi: 10.1039/C8TA00405F
21 张媛媛, 林鑫, 魏雷, 等. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53 (7): 824- 832.
21 ZHANG Y Y , LIN X , WEI L , et al. Crystallization behavior of laser solid forming of annealed Zr55Cu30Al10Ni5 powder[J]. Acta Metallurgica Sinica, 2017, 53 (7): 824- 832.
22 KETKAEW J , LIU Z , CHEN W , et al. Critical crystallization for embrittlement in metallic glasses[J]. Physical Review Letters, 2015, 115 (26): 265502.
doi: 10.1103/PhysRevLett.115.265502
23 SHETE M K , SINGH I , NARASIMHAN R , et al. Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites[J]. Scripta Materialia, 2016, 124, 51- 55.
doi: 10.1016/j.scriptamat.2016.06.020
24 CHEN B , SHI T , LI M , et al. Crystallization of Zr55Cu30Al10Ni5 bulk metallic glass in laser welding:simulation and experiment[J]. Advanced Engineering Materials, 2015, 17 (4): 483- 490.
doi: 10.1002/adem.201400145
25 LU Y , ZHANG H , LI H , et al. Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2017, 461, 12- 17.
doi: 10.1016/j.jnoncrysol.2017.01.038
26 龚玉兵, 王善林, 李宏祥, 等. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46 (3): 74- 80.
26 GONG Y B , WANG S L , LI H X , et al. Effect of pulse width on microstructure and hardness of FeSiB coatings by laser cladding[J]. Journal of Materials Engineering, 2018, 46 (3): 74- 80.
27 KEMPEN A T W , SOMMER F , MITTEMEIJER E J . Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth[J]. Journal of Materials Science, 2002, 37 (7): 1321- 1332.
doi: 10.1023/A:1014556109351
28 KISSINGER H E . Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57 (4): 217- 221.
doi: 10.6028/jres.057.026
[1] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[2] 张舒研, 高洋洋, 张志彬, 梁秀兵, 王立忠. 高熵非晶合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(1): 44-54.
[3] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[4] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[5] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[6] 山圣峰, 田晓生, 于涛, 贾元智, 马明臻. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46(7): 88-93.
[7] 李春燕, 尹金锋, 王铮, 寇生中, 赵燕春. Er对ZrCuNiAl非晶合金结构、力学性能、热稳定性及非晶形成能力的影响[J]. 材料工程, 2018, 46(1): 1-7.
[8] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[9] 金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
[10] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[11] 王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
[12] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
[13] 刘繁茂, 张慧燕, 张涛. Fe-Nd-B-Zr块体非晶合金的形成能力和磁性能[J]. 材料工程, 2014, 0(10): 6-10.
[14] 张志彬, 梁秀兵, 陈永雄, 徐滨士. 热喷涂工艺制备铝基非晶态合金材料研究进展[J]. 材料工程, 2012, 0(2): 86-90.
[15] 张雪峰, 李会容, 武昭妤. 快速热处理对BaSrTiO3薄膜微结构的影响[J]. 材料工程, 2009, 0(9): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn