Based on the design concept of aircraft landing gear, the recent achievements in research and development on both ultra-high strength steels and ultra-high strength stainless steels (UHSSS) for the landing gear in aircraft were reviewed. The composition, microstructure and mechanical properties of typical commercial UHSSS grades that were produced and used were also summarized. It was then proposed that the future research on UHSSS with the improved combination of strength and toughness should focus on designing both composition and processes of new UHSSS grades by using the up-to-date material thermodynamic and kinetic calculations, particular attention should be paid to microstructural designing on either high density coherent or multi-type nanosized precipitation and the deliberate tailoring of retained austenite with enhanced mechanical stability for toughening; both of them could contribute to the strengthening and toughening of UHSSS. Finally, the updated hot working technology was put forward, the isothermal multi-direction forging, which could significantly improve the comprehensive mechanical properties of UHSSS.
YE G N , CHEN Y L . Challenges and countermeasure invest-igation of corrosion and fatigue on aircraft structures[J]. Advan-ces in Aeronautical Science and Engineering, 2011, 2 (1): 66- 69.
doi: 10.3969/j.issn.1674-8190.2011.01.010
JIANG Y , YIN Z D , ZHU J C , et al. Development status of maraging stainless steel[J]. Special Steel, 2003, 24 (3): 1- 5.
doi: 10.3969/j.issn.1003-8620.2003.03.001
YANG Z Y , LIU Z B , LIANG J X , et al. Development of maraging stainless steel[J]. Transactions of Materials and Heat Treatment, 2008, 29 (4): 1- 7.
4
WAND J , ZOU H , LI C , et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350℃[J]. Materials Characterization, 2006, 57 (4): 274- 280.
5
BHARGAVA A K , TIWARI A N . Rapid solidification of 17-7 PH stainless steel:heat treatment response[J]. International Journal of Rapid Solidification, 1996, 9 (2): 121- 136.
6
ZHANG T P , ZHAN D P , QI X W , et al. Austenite and precipi-tation in secondary-hardening ultra-high-strength stainless steel[J]. Materials Characterization, 2018, 144, 393- 399.
doi: 10.1016/j.matchar.2018.07.038
7
ANIL K V , KARTHIKEYAN M K , GUPTA R K , et al. Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel[J]. Materials Science Forum, 2012, 710, 483- 488.
doi: 10.4028/www.scientific.net/MSF.710.483
LIU Z B , LIANG J X , YANG Z Y , et al. Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J]. Journal of Aero-nautical Materials, 2011, 31 (1): 7- 12.
ZHOU S M , CHENG X W , ZHANG Y J , et al. High temperature thermo-mechanical treatment of novel ultra-high-strength steel[J]. Journal of Materials Engineering, 2016, 44 (5): 37- 41.
10
吴迪.钨钼复合二次硬化超高强度钢析出相及热变形行为研究[D].秦皇岛: 燕山大学, 2016.
10
WU D.Study on the precipitate characteristic and hot defor-mation behavior of a W-Mo compound secondary hardening ultrahigh strength stainless steel[D].Qinhuangdao: Yanshan University, 2016.
LI A N , LI Y , WANG C X , et al. Influence of Mo on secondary hardening behavior of ultra high strength AF1410 steel[J]. Iron and Steel, 2007, 42 (9): 60- 62.
doi: 10.3321/j.issn:0449-749x.2007.09.015
LI Z , ZHAO Z Y . Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials, 2006, 26 (3): 265- 270.
doi: 10.3969/j.issn.1005-5053.2006.03.054
SHI L . Ultra-high tensile steel for next generation aircraft[J]. Aviation Engineering and Maintenance, 2000, (3): 39- 40.
doi: 10.3969/j.issn.1672-0989.2000.03.016
14
LEITNER H , SCHNITZER R , SCHOBER M , et al. Precipitate modification in PH13-8 Mo type maraging steel[J]. Acta Materialia, 2011, 59 (12): 5012- 5022.
doi: 10.1016/j.actamat.2011.04.053
15
PING D H , OHNUMA M , HIRAKAWA Y , et al. Microstruc-tural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J]. Materials Science and Engineering:A, 2005, 394 (1/2): 285- 295.
16
GUO Z , SHA W , VAUMOUSSE D . Microstructural evolution in a PH13-8 stainless steel after ageing[J]. Acta Materialia, 2003, 51 (1): 101- 116.
doi: 10.1016/S1359-6454(02)00353-1
17
RAVITEJ S V , MURTHY M , KRISHNAPPA M B . Review paper on optimization of process parameters in turning Custom 465® precipitation hardened stainless steel[J]. Materials Today:Proceedings, 2018, 5 (1): 2787- 2794.
doi: 10.1016/j.matpr.2018.01.066
18
OLSON G B , KUEHMANN C J . Materials genomics:from CALPHAD to flight[J]. Scripta Materialia, 2014, 70, 25- 30.
doi: 10.1016/j.scriptamat.2013.08.032
19
陆世英, 张廷凯. 不锈钢[M]. 北京: 原子能出版社, 1995: 19- 59.
19
LU S Y , ZHANG T K . Stainless steel[M]. Beijing: Atomic Energy Press, 1995: 19- 59.
LIU Z B , YANG Z Y , YONG Q L , et al. A 1900 MPa grade ultra-high strength stainless steel[J]. Materials for Mechanical Engineering, 2008, 32 (3): 48- 51.
doi: 10.3969/j.issn.1000-3738.2008.03.015
21
LI Y , YAN W , COTTON J D , et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J]. Materials & Design, 2015, 82, 56- 63.
22
GUO J , SHANG C J , YANG S W , et al. Effect of carbon content on mechanical properties and weather resistance of high perfor-mance bridge steels[J]. Journal of Iron and Steel Research, International, 2009, 16 (6): 63- 69.
doi: 10.1016/S1006-706X(10)60029-5
23
BENDEL L P, SARDELIS T A.Nickel titanium martensitic steel for surgical needles: US Patent 5000912[P].1991-03-19.
24
BENDEL L P, SARDELIS T A, TROZZO LAWRENCE P, et al.Means for predicting performance of stainless steel alloy for use with surgical needles: US Patent 5651843[P].1997-07-29.
25
ZYKOVA R A , SPEKTOR Y I , POLITAEV Y M . Effect of titanium on the structure and properties of maraging tool steel 05Kh12N6D2SGTMF[J]. Metal Science and Heat Treatment, 1986, 28 (9): 682- 686.
doi: 10.1007/BF00742752
26
VOZNESENSKAYA N M , KABLOV E N , PETRAKOV A F , et al. High-strength corrosion-resistant steels of the austenitic-martensitic class[J]. Metal Science and Heat Treatment, 2002, 44 (7/8): 300- 303.
doi: 10.1023/A:1021259905233
27
MINER R E , JANCKSON J K , GIBBONS D F . Internal friction in 18 Ni maraging steel[J]. Transaction of AIME, 1966, 236 (11): 1565- 1570.
LIU Z B , LIANG J X , YANG Z Y . Effect and application of Mo in martensitic precipitation hardening stainless steel[J]. Contin-uous Casting, 2015, 41 (3): 44- 48.
29
KWON H , LEE J H , LEE K B , et al. Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J]. Metallurgical and Materials Transactions A, 1997, 28 (3): 621- 627.
doi: 10.1007/s11661-997-0047-0
30
KAPOOR R , BATRA I S . On the α' to γ transformation in maraging (grade 350), PH 13-8 Mo and 17-4 PH steels[J]. Materials Science and Engineering:A, 2004, 371 (1): 324- 334.
31
PALANISAMY D , SENTHIL P , SENTHILKUMAR V . The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (1): 53- 63.
doi: 10.1016/j.acme.2015.09.004
32
王正樵, 吴幼林. 不锈钢[M]. 北京: 化学工业出版社, 1991.
32
WANG Z Q , WU Y L . Stainless steel[M]. Beijing: Chemical Industry Press, 1991.
33
HABIBI H R . Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Materials Letters, 2005, 59 (14/15): 1824- 1827.
34
WANG J S , MULHOLLAND M D , OLSON G B , et al. Predic-tion of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61 (13): 4939- 4952.
doi: 10.1016/j.actamat.2013.04.052
35
LSELIE W C . Iron and its dilute substitutional solid solutions[J]. Metallurgical Transactions, 1972, 3 (1): 5- 26.
doi: 10.1007/BF02680580
36
GHOSH G , OLSON G B . Kinetics of F.C.C.→B.C.C. hetero-geneous martensitic nucleation-Ⅰ.The critical driving force for athermal nucleation[J]. Acta Metallurgica et Materialia, 1994, 42 (10): 3361- 3370.
doi: 10.1016/0956-7151(94)90468-5
37
WANG G F , STRACHAN A , CAGIN T , et al. Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics:application to bcc tantalum[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12 (4): 371- 389.
doi: 10.1088/0965-0393/12/4/S06
38
DIPIERRO S , PALATUCCI G , VALDINOCI E . Dislocation dyn-amics in crystals:a macroscopic theory in a fractional laplace setting[J]. Communications in Mathematical Physics, 2015, 333 (2): 1061- 1105.
doi: 10.1007/s00220-014-2118-6
39
HE B B , HU B , YEN H W , et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357 (6355): 1029- 1032.
doi: 10.1126/science.aan0177
40
WANG C , WANG M , SHI J , et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58 (6): 492- 495.
doi: 10.1016/j.scriptamat.2007.10.053
41
MORITO S , TANAKA H , KONISHI R , et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51 (6): 1789- 1799.
doi: 10.1016/S1359-6454(02)00577-3
42
LIANG Y , LONG S , XU P , et al. The important role of marte-nsite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J]. Materials Science and Engineering:A, 2017, 695, 154- 164.
doi: 10.1016/j.msea.2017.03.110
WANG X H.Composition, microstructure and properties of ultra-high strength stainless steel[D].Beijing: University of Science and Technology Beijing, 2019.
44
BAJGUIRANI H R H . The effect of ageing upon the micros-tructure and mechanical properties of type 15-5 PH stainless steel[J]. Materials Science and Engineering:A, 2002, 338 (1/2): 142- 159.
45
BRATUKHIN A G . Ways to increase the reliability of welded joints of high-strength steels in a new generation of aircraft[J]. Metal Science and Heat Treatment, 1997, 39 (3): 123- 126.
doi: 10.1007/BF02466281
46
VOZNESENSKAYA N M , KABLOV E N , PETRAKOV A F , et al. High-strength corrosion-resistant steels of the austenitic-martensitic class[J]. Metal Science and Heat Treatment, 2002, 44 (7/8): 300- 303.
doi: 10.1023/A:1021259905233
47
KOSTINA M V , BANNYKH O A , BLINOV V M . Effect of plastic deformation and heat treatment on the structure and hardening of nitrogen-bearing steel 0Kh16AN4B[J]. Metal Science and Heat Treatment, 2001, 43 (7): 259- 262.
48
IL'INA V P . Effect of heat treatment mode on the microstruc-ture and fracture behavior of maraging steels 03Kh11N10M2T-VD and 03Kh11N10M2T2-VD[J]. Metal Science and Heat Treatment, 2002, 44 (3/4): 116- 123.
doi: 10.1023/A:1019622221118
49
RUNDKVIST N A , GRACHEV S V . Effect of alloying and of the austenizing temperature on the phase composition and properties of corrosion-resistant maraging steels[J]. Metal Science and Heat Treatment, 1989, 31 (4): 244- 250.
doi: 10.1007/BF00715795
50
BEL'TYUKOV A A , STEPANOV V P , SHEIN A S . Effect of carbon on the properties of corrosion-resistant maraging steels without titanium[J]. Metal Science and Heat Treatment, 1989, 31 (11): 830- 832.
doi: 10.1007/BF00795566
51
LIU P , STIGENBERG A H , NILSSON J O . Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel[J]. Acta Metallurgica et Materialia, 1995, 43 (7): 2881- 2890.
doi: 10.1016/0956-7151(94)00461-P
52
WEBSTER D . Optimization of strength and toughness in two high-strength stainless steels[J]. Metallurgical Transactions, 1971, 2 (7): 1857- 1862.
53
COUTURIER L , GEUSER F D , DSECOINS M , et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Materials & Design, 2016, 107, 416- 425.
LIANG J X , LIU Z B , YANG Z Y , et al. Development and application of high strength stainless steel[J]. Aerospace Materials and Technology, 2013, 43 (3): 1- 11.
doi: 10.3969/j.issn.1007-2330.2013.03.001
55
SCHOBER M , SCHNITZER R , LRITNER H . Precipitation evol-ution in a Ti-free and Ti-containing stainless maraging steel[J]. Ultramicroscopy, 2009, 109 (5): 553- 562.
doi: 10.1016/j.ultramic.2008.10.016
56
OLSON G B . Genomic materials design:the ferrous frontier[J]. Acta Materialia, 2013, 61 (3): 771- 781.
doi: 10.1016/j.actamat.2012.10.045
57
KUEHMANN C , TUFTS B , TRESTER P . Computational des-ign for ultra high-strength alloy[J]. Advanced Materials and Process, 2008, 166 (1): 37- 40.
58
WANG C , ZHANG C , YANG Z , et al. Microstructure analysis and yield strength simulation in high Co-Ni secondary hardening steel[J]. Materials Science and Engineering:A, 2016, 669, 312- 317.
doi: 10.1016/j.msea.2016.05.069
59
JIANG S H , WANG H , WU Y , et al. Ultra-strong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544 (7651): 460- 464.
doi: 10.1038/nature22032
60
LI Y , LI W , LIU W Q , et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Materialia, 2018, 146, 126- 141.
doi: 10.1016/j.actamat.2017.12.035
61
XIE K Y , ZHENG T , CAIRENG J M , et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scripta Mate-rialia, 2012, 66 (9): 710- 713.
doi: 10.1016/j.scriptamat.2012.01.029
62
ZHU Y S , HU B , LUO H W . Influence of Nb and V on microst-ructure and mechanical properties of hot-rolled medium Mn steels[J]. Steel Research International, 2018, 89 (9): 1700389.
doi: 10.1002/srin.201700389
63
SANKARAN K , MISHRA R S . Metallurgy and design of alloys with hierarchical microstructures[M]. Amsterdam, Netherl-ands: Elsevier, 2017: 289- 343.
64
SAHA A , OLSON G B . Computer-aided design of transformation toughened blast resistant naval hull steels:part Ⅰ[J]. Journal of Computer-Aided Materials Design, 2007, 14 (2): 177- 200.
doi: 10.1007/s10820-006-9031-z