Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (9): 1-12    DOI: 10.11868/j.issn.1001-4381.2019.000122
  综述 本期目录 | 过刊浏览 | 高级检索 |
飞机起落架用超高强度不锈钢的研究及应用进展
王晓辉, 罗海文()
北京科技大学 冶金与生态工程学院, 北京 100083
Research and application progress in ultra-high strength stainless steel for aircraft landing gear
Xiao-hui WANG, Hai-wen LUO()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3233 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

本文结合飞机起落架的设计理念,梳理了飞机起落架用超高强度钢及高强不锈钢的应用及发展历程,重点阐述了典型超高强度不锈钢的成分、组织和力学性能以及强韧化机理。建议通过材料热力学动力学计算创新设计新的超高强度不锈钢钢种;提出新型超高强度不锈钢的组织设计,将更关注多类型或高密度的共格析出强化以及高力学稳定性残余奥氏体的强韧化作用机制;最后指出采用最新的一些加工工艺技术,如等温多向锻造工艺技术,可显著提高超高强度不锈钢的综合力学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓辉
罗海文
关键词 超高强度不锈钢析出相强化机理残余奥氏体制备工艺    
Abstract

Based on the design concept of aircraft landing gear, the recent achievements in research and development on both ultra-high strength steels and ultra-high strength stainless steels (UHSSS) for the landing gear in aircraft were reviewed. The composition, microstructure and mechanical properties of typical commercial UHSSS grades that were produced and used were also summarized. It was then proposed that the future research on UHSSS with the improved combination of strength and toughness should focus on designing both composition and processes of new UHSSS grades by using the up-to-date material thermodynamic and kinetic calculations, particular attention should be paid to microstructural designing on either high density coherent or multi-type nanosized precipitation and the deliberate tailoring of retained austenite with enhanced mechanical stability for toughening; both of them could contribute to the strengthening and toughening of UHSSS. Finally, the updated hot working technology was put forward, the isothermal multi-direction forging, which could significantly improve the comprehensive mechanical properties of UHSSS.

Key wordsultra-high strength stainless steel    precipitation    strengthening mechanism    retained aus-tenite    manufacturing process
收稿日期: 2019-02-15      出版日期: 2019-09-18
中图分类号:  TG142.71  
基金资助:国家重点研发计划项目(2016YFB0300202);国家重点研发计划项目(2016YFB0300102)
通讯作者: 罗海文     E-mail: luohaiwen@ustb.edu.cn
作者简介: 罗海文(1972-), 男, 教授, 博士, 从事先进钢铁材料的研发, 联系地址:北京市海淀区学院路30号北京科技大学冶金与生态工程学院(100083), E-mail:luohaiwen@ustb.edu.cn
引用本文:   
王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
Xiao-hui WANG, Hai-wen LUO. Research and application progress in ultra-high strength stainless steel for aircraft landing gear. Journal of Materials Engineering, 2019, 47(9): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000122      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/1
Fig.1  原奥氏体晶粒尺寸与马氏体包、马氏体板条束(a)和马氏体板条(b)的关系以及原奥氏体晶粒尺寸、马氏体包(c)和马氏体板条束、马氏体板条(d)与U型冲击功(AKU)的关系[43]
Alloy C Cr Ni Mo Co Cu Al Ti Precipitate
15-5PH 0.04 15 4.7 - - 3.0 - - Cu
Custom450 0.04 11.5 8.5 - - 1.5 - - Cu
PH13-8Mo 0.03 12.6 7.9 1.7 - - 1.0 - NiAl
Custom465 0.02 11.8 11 1.0 - - - 1.7 Ni3Ti
Pyromet X-15 0.01 15 - 2.9 20 - - - R
Pyromet X-23 0.03 10 8 5.5 10 - - - R
Ultrafort 401 0.02 12 8.2 2.0 5.3 - - 0.8 R+Ni3Ti
Ultrafort 403 0.02 11 7.7 4.4 9 - - 0.4 R+Ni3Ti
AFC260 0.08 15.5 2 4.3 13 - - - R+M2C
F863 0.03 12.5 4.5 5.0 14 - - 0.4 Laves+MC
Ferrium®S53 0.21 9.0 4.8 1.5 13.0 - - 0.02 M2C
Table 1  典型高强不锈钢的合金成分及强化相[20, 44-52]
Alloy Tempering temperature/℃ Yield strength/MPa Ultimate tensilestrength/MPa Fracture toughness/(MPa·m1/2) Charpy U notch impactenergy/J
15-5PH 496 1213 1317 - 79
Custom450 510 1269 1289 - 55
PH13-8Mo 510 1448 1551 - 41
Custom465 510 1603 1738 93 -
Pyromet X-15 550 1482 1620 - 20
Pyromet X-23 510 1634 1779 77 24
Ultrafort 401 475 1565 1669 103 56
Ultrafort 403 480 1669 1689 60 34
AFC260 538 1572 1751 67 -
F863 540 1550 1940 103 -
Ferrium®S53 510 1551 1986 77 -
Table 2  典型高强不锈钢的拉伸强度及韧性[20, 44-52]
Fig.2  航空用超高强度钢的断裂韧度与屈服强度的关系[2-3, 9-12]
Fig.3  热轧9Mn-0.3V钢的显微组织(a)与热轧9Mn钢、9Mn-0.3V钢和9Mn-0.3V-Nb钢力学性能(b)[62]
Fig.4  不同C含量Fe-10Ni-8Co-2Cr-1Mo钢在不同温度回火1h后的力学性能与组织演变[63]
Fig.5  采用不同工艺制备的超高强度不锈钢的力学性能[43]
Fig.6  采用不同工艺制备的超高强度不锈钢的原奥氏体晶粒形貌[43]
(a)传统工艺;(b)等温多向锻造工艺
1 叶广宁, 陈跃良. 腐蚀和疲劳对飞机结构的挑战及解决思路[J]. 航空工程进展, 2011, 2 (1): 66- 69.
doi: 10.3969/j.issn.1674-8190.2011.01.010
1 YE G N , CHEN Y L . Challenges and countermeasure invest-igation of corrosion and fatigue on aircraft structures[J]. Advan-ces in Aeronautical Science and Engineering, 2011, 2 (1): 66- 69.
doi: 10.3969/j.issn.1674-8190.2011.01.010
2 姜越, 尹钟大, 朱景川, 等. 马氏体时效不锈钢的发展现状[J]. 特殊钢, 2003, 24 (3): 1- 5.
doi: 10.3969/j.issn.1003-8620.2003.03.001
2 JIANG Y , YIN Z D , ZHU J C , et al. Development status of maraging stainless steel[J]. Special Steel, 2003, 24 (3): 1- 5.
doi: 10.3969/j.issn.1003-8620.2003.03.001
3 杨志勇, 刘振宝, 梁剑雄, 等. 马氏体时效不锈钢的发展[J]. 材料热处理学报, 2008, 29 (4): 1- 7.
3 YANG Z Y , LIU Z B , LIANG J X , et al. Development of maraging stainless steel[J]. Transactions of Materials and Heat Treatment, 2008, 29 (4): 1- 7.
4 WAND J , ZOU H , LI C , et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350℃[J]. Materials Characterization, 2006, 57 (4): 274- 280.
5 BHARGAVA A K , TIWARI A N . Rapid solidification of 17-7 PH stainless steel:heat treatment response[J]. International Journal of Rapid Solidification, 1996, 9 (2): 121- 136.
6 ZHANG T P , ZHAN D P , QI X W , et al. Austenite and precipi-tation in secondary-hardening ultra-high-strength stainless steel[J]. Materials Characterization, 2018, 144, 393- 399.
doi: 10.1016/j.matchar.2018.07.038
7 ANIL K V , KARTHIKEYAN M K , GUPTA R K , et al. Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel[J]. Materials Science Forum, 2012, 710, 483- 488.
doi: 10.4028/www.scientific.net/MSF.710.483
8 刘振宝, 梁剑雄, 杨志勇, 等. 碳含量对15-5PH沉淀硬化不锈钢板材的组织与性能的影响[J]. 航空材料学报, 2011, 31 (1): 7- 12.
8 LIU Z B , LIANG J X , YANG Z Y , et al. Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J]. Journal of Aero-nautical Materials, 2011, 31 (1): 7- 12.
9 周士猛, 程兴旺, 张由景, 等. 新型超高强度钢的高温形变热处理[J]. 材料工程, 2016, 44 (5): 37- 41.
9 ZHOU S M , CHENG X W , ZHANG Y J , et al. High temperature thermo-mechanical treatment of novel ultra-high-strength steel[J]. Journal of Materials Engineering, 2016, 44 (5): 37- 41.
10 吴迪.钨钼复合二次硬化超高强度钢析出相及热变形行为研究[D].秦皇岛: 燕山大学, 2016.
10 WU D.Study on the precipitate characteristic and hot defor-mation behavior of a W-Mo compound secondary hardening ultrahigh strength stainless steel[D].Qinhuangdao: Yanshan University, 2016.
11 李阿妮, 厉勇, 王春旭, 等. Mo含量对AF1410钢二次硬化效果的影响[J]. 钢铁, 2007, 42 (9): 60- 62.
doi: 10.3321/j.issn:0449-749x.2007.09.015
11 LI A N , LI Y , WANG C X , et al. Influence of Mo on secondary hardening behavior of ultra high strength AF1410 steel[J]. Iron and Steel, 2007, 42 (9): 60- 62.
doi: 10.3321/j.issn:0449-749x.2007.09.015
12 李志, 赵振业. AerMet100钢的研究与发展[J]. 航空材料学报, 2006, 26 (3): 265- 270.
doi: 10.3969/j.issn.1005-5053.2006.03.054
12 LI Z , ZHAO Z Y . Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials, 2006, 26 (3): 265- 270.
doi: 10.3969/j.issn.1005-5053.2006.03.054
13 石琳. 下一代飞机用超高强度钢[J]. 航空工程与维修, 2000, (3): 39- 40.
doi: 10.3969/j.issn.1672-0989.2000.03.016
13 SHI L . Ultra-high tensile steel for next generation aircraft[J]. Aviation Engineering and Maintenance, 2000, (3): 39- 40.
doi: 10.3969/j.issn.1672-0989.2000.03.016
14 LEITNER H , SCHNITZER R , SCHOBER M , et al. Precipitate modification in PH13-8 Mo type maraging steel[J]. Acta Materialia, 2011, 59 (12): 5012- 5022.
doi: 10.1016/j.actamat.2011.04.053
15 PING D H , OHNUMA M , HIRAKAWA Y , et al. Microstruc-tural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J]. Materials Science and Engineering:A, 2005, 394 (1/2): 285- 295.
16 GUO Z , SHA W , VAUMOUSSE D . Microstructural evolution in a PH13-8 stainless steel after ageing[J]. Acta Materialia, 2003, 51 (1): 101- 116.
doi: 10.1016/S1359-6454(02)00353-1
17 RAVITEJ S V , MURTHY M , KRISHNAPPA M B . Review paper on optimization of process parameters in turning Custom 465® precipitation hardened stainless steel[J]. Materials Today:Proceedings, 2018, 5 (1): 2787- 2794.
doi: 10.1016/j.matpr.2018.01.066
18 OLSON G B , KUEHMANN C J . Materials genomics:from CALPHAD to flight[J]. Scripta Materialia, 2014, 70, 25- 30.
doi: 10.1016/j.scriptamat.2013.08.032
19 陆世英, 张廷凯. 不锈钢[M]. 北京: 原子能出版社, 1995: 19- 59.
19 LU S Y , ZHANG T K . Stainless steel[M]. Beijing: Atomic Energy Press, 1995: 19- 59.
20 刘振宝, 杨志勇, 雍歧龙, 等. 1900MPa级超高强度不锈钢的研制[J]. 机械工程材料, 2008, 32 (3): 48- 51.
doi: 10.3969/j.issn.1000-3738.2008.03.015
20 LIU Z B , YANG Z Y , YONG Q L , et al. A 1900 MPa grade ultra-high strength stainless steel[J]. Materials for Mechanical Engineering, 2008, 32 (3): 48- 51.
doi: 10.3969/j.issn.1000-3738.2008.03.015
21 LI Y , YAN W , COTTON J D , et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J]. Materials & Design, 2015, 82, 56- 63.
22 GUO J , SHANG C J , YANG S W , et al. Effect of carbon content on mechanical properties and weather resistance of high perfor-mance bridge steels[J]. Journal of Iron and Steel Research, International, 2009, 16 (6): 63- 69.
doi: 10.1016/S1006-706X(10)60029-5
23 BENDEL L P, SARDELIS T A.Nickel titanium martensitic steel for surgical needles: US Patent 5000912[P].1991-03-19.
24 BENDEL L P, SARDELIS T A, TROZZO LAWRENCE P, et al.Means for predicting performance of stainless steel alloy for use with surgical needles: US Patent 5651843[P].1997-07-29.
25 ZYKOVA R A , SPEKTOR Y I , POLITAEV Y M . Effect of titanium on the structure and properties of maraging tool steel 05Kh12N6D2SGTMF[J]. Metal Science and Heat Treatment, 1986, 28 (9): 682- 686.
doi: 10.1007/BF00742752
26 VOZNESENSKAYA N M , KABLOV E N , PETRAKOV A F , et al. High-strength corrosion-resistant steels of the austenitic-martensitic class[J]. Metal Science and Heat Treatment, 2002, 44 (7/8): 300- 303.
doi: 10.1023/A:1021259905233
27 MINER R E , JANCKSON J K , GIBBONS D F . Internal friction in 18 Ni maraging steel[J]. Transaction of AIME, 1966, 236 (11): 1565- 1570.
28 刘振宝, 梁剑雄, 杨志勇. Mo在马氏体沉淀硬化不锈钢中的作用与应用[J]. 连铸, 2015, 41 (3): 44- 48.
28 LIU Z B , LIANG J X , YANG Z Y . Effect and application of Mo in martensitic precipitation hardening stainless steel[J]. Contin-uous Casting, 2015, 41 (3): 44- 48.
29 KWON H , LEE J H , LEE K B , et al. Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J]. Metallurgical and Materials Transactions A, 1997, 28 (3): 621- 627.
doi: 10.1007/s11661-997-0047-0
30 KAPOOR R , BATRA I S . On the α' to γ transformation in maraging (grade 350), PH 13-8 Mo and 17-4 PH steels[J]. Materials Science and Engineering:A, 2004, 371 (1): 324- 334.
31 PALANISAMY D , SENTHIL P , SENTHILKUMAR V . The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (1): 53- 63.
doi: 10.1016/j.acme.2015.09.004
32 王正樵, 吴幼林. 不锈钢[M]. 北京: 化学工业出版社, 1991.
32 WANG Z Q , WU Y L . Stainless steel[M]. Beijing: Chemical Industry Press, 1991.
33 HABIBI H R . Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Materials Letters, 2005, 59 (14/15): 1824- 1827.
34 WANG J S , MULHOLLAND M D , OLSON G B , et al. Predic-tion of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61 (13): 4939- 4952.
doi: 10.1016/j.actamat.2013.04.052
35 LSELIE W C . Iron and its dilute substitutional solid solutions[J]. Metallurgical Transactions, 1972, 3 (1): 5- 26.
doi: 10.1007/BF02680580
36 GHOSH G , OLSON G B . Kinetics of F.C.C.→B.C.C. hetero-geneous martensitic nucleation-Ⅰ.The critical driving force for athermal nucleation[J]. Acta Metallurgica et Materialia, 1994, 42 (10): 3361- 3370.
doi: 10.1016/0956-7151(94)90468-5
37 WANG G F , STRACHAN A , CAGIN T , et al. Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics:application to bcc tantalum[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12 (4): 371- 389.
doi: 10.1088/0965-0393/12/4/S06
38 DIPIERRO S , PALATUCCI G , VALDINOCI E . Dislocation dyn-amics in crystals:a macroscopic theory in a fractional laplace setting[J]. Communications in Mathematical Physics, 2015, 333 (2): 1061- 1105.
doi: 10.1007/s00220-014-2118-6
39 HE B B , HU B , YEN H W , et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357 (6355): 1029- 1032.
doi: 10.1126/science.aan0177
40 WANG C , WANG M , SHI J , et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scripta Materialia, 2008, 58 (6): 492- 495.
doi: 10.1016/j.scriptamat.2007.10.053
41 MORITO S , TANAKA H , KONISHI R , et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51 (6): 1789- 1799.
doi: 10.1016/S1359-6454(02)00577-3
42 LIANG Y , LONG S , XU P , et al. The important role of marte-nsite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J]. Materials Science and Engineering:A, 2017, 695, 154- 164.
doi: 10.1016/j.msea.2017.03.110
43 王晓辉.超高强度不锈钢的成分与工艺对组织和性能影响的基础研究[D].北京: 北京科技大学, 2019.
43 WANG X H.Composition, microstructure and properties of ultra-high strength stainless steel[D].Beijing: University of Science and Technology Beijing, 2019.
44 BAJGUIRANI H R H . The effect of ageing upon the micros-tructure and mechanical properties of type 15-5 PH stainless steel[J]. Materials Science and Engineering:A, 2002, 338 (1/2): 142- 159.
45 BRATUKHIN A G . Ways to increase the reliability of welded joints of high-strength steels in a new generation of aircraft[J]. Metal Science and Heat Treatment, 1997, 39 (3): 123- 126.
doi: 10.1007/BF02466281
46 VOZNESENSKAYA N M , KABLOV E N , PETRAKOV A F , et al. High-strength corrosion-resistant steels of the austenitic-martensitic class[J]. Metal Science and Heat Treatment, 2002, 44 (7/8): 300- 303.
doi: 10.1023/A:1021259905233
47 KOSTINA M V , BANNYKH O A , BLINOV V M . Effect of plastic deformation and heat treatment on the structure and hardening of nitrogen-bearing steel 0Kh16AN4B[J]. Metal Science and Heat Treatment, 2001, 43 (7): 259- 262.
48 IL'INA V P . Effect of heat treatment mode on the microstruc-ture and fracture behavior of maraging steels 03Kh11N10M2T-VD and 03Kh11N10M2T2-VD[J]. Metal Science and Heat Treatment, 2002, 44 (3/4): 116- 123.
doi: 10.1023/A:1019622221118
49 RUNDKVIST N A , GRACHEV S V . Effect of alloying and of the austenizing temperature on the phase composition and properties of corrosion-resistant maraging steels[J]. Metal Science and Heat Treatment, 1989, 31 (4): 244- 250.
doi: 10.1007/BF00715795
50 BEL'TYUKOV A A , STEPANOV V P , SHEIN A S . Effect of carbon on the properties of corrosion-resistant maraging steels without titanium[J]. Metal Science and Heat Treatment, 1989, 31 (11): 830- 832.
doi: 10.1007/BF00795566
51 LIU P , STIGENBERG A H , NILSSON J O . Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel[J]. Acta Metallurgica et Materialia, 1995, 43 (7): 2881- 2890.
doi: 10.1016/0956-7151(94)00461-P
52 WEBSTER D . Optimization of strength and toughness in two high-strength stainless steels[J]. Metallurgical Transactions, 1971, 2 (7): 1857- 1862.
53 COUTURIER L , GEUSER F D , DSECOINS M , et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Materials & Design, 2016, 107, 416- 425.
54 梁剑雄, 刘振宝, 杨志勇, 等. 高强不锈钢的发展与应用技术[J]. 宇航材料工艺, 2013, 43 (3): 1- 11.
doi: 10.3969/j.issn.1007-2330.2013.03.001
54 LIANG J X , LIU Z B , YANG Z Y , et al. Development and application of high strength stainless steel[J]. Aerospace Materials and Technology, 2013, 43 (3): 1- 11.
doi: 10.3969/j.issn.1007-2330.2013.03.001
55 SCHOBER M , SCHNITZER R , LRITNER H . Precipitation evol-ution in a Ti-free and Ti-containing stainless maraging steel[J]. Ultramicroscopy, 2009, 109 (5): 553- 562.
doi: 10.1016/j.ultramic.2008.10.016
56 OLSON G B . Genomic materials design:the ferrous frontier[J]. Acta Materialia, 2013, 61 (3): 771- 781.
doi: 10.1016/j.actamat.2012.10.045
57 KUEHMANN C , TUFTS B , TRESTER P . Computational des-ign for ultra high-strength alloy[J]. Advanced Materials and Process, 2008, 166 (1): 37- 40.
58 WANG C , ZHANG C , YANG Z , et al. Microstructure analysis and yield strength simulation in high Co-Ni secondary hardening steel[J]. Materials Science and Engineering:A, 2016, 669, 312- 317.
doi: 10.1016/j.msea.2016.05.069
59 JIANG S H , WANG H , WU Y , et al. Ultra-strong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544 (7651): 460- 464.
doi: 10.1038/nature22032
60 LI Y , LI W , LIU W Q , et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Materialia, 2018, 146, 126- 141.
doi: 10.1016/j.actamat.2017.12.035
61 XIE K Y , ZHENG T , CAIRENG J M , et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scripta Mate-rialia, 2012, 66 (9): 710- 713.
doi: 10.1016/j.scriptamat.2012.01.029
62 ZHU Y S , HU B , LUO H W . Influence of Nb and V on microst-ructure and mechanical properties of hot-rolled medium Mn steels[J]. Steel Research International, 2018, 89 (9): 1700389.
doi: 10.1002/srin.201700389
63 SANKARAN K , MISHRA R S . Metallurgy and design of alloys with hierarchical microstructures[M]. Amsterdam, Netherl-ands: Elsevier, 2017: 289- 343.
64 SAHA A , OLSON G B . Computer-aided design of transformation toughened blast resistant naval hull steels:part Ⅰ[J]. Journal of Computer-Aided Materials Design, 2007, 14 (2): 177- 200.
doi: 10.1007/s10820-006-9031-z
[1] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[2] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[3] 吴聪, 景财年, 林涛, 叶道珉, 雷启腾. 应变速率对热冲压淬火-配分钢显微组织与力学性能的影响[J]. 材料工程, 2022, 50(10): 73-79.
[4] 王官涛, 周永浪, 赵卓, 王立军, 刘春明. 添加Si对马氏体不锈钢淬火-配分组织和性能的影响[J]. 材料工程, 2021, 49(8): 97-103.
[5] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al, Cr, Si, Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[6] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[7] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[8] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[9] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[10] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[11] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[12] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[13] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[14] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[15] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn