Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 1-12    DOI: 10.11868/j.issn.1001-4381.2019.000122
  综述 本期目录 | 过刊浏览 | 高级检索 |
飞机起落架用超高强度不锈钢的研究及应用进展
王晓辉, 罗海文
北京科技大学 冶金与生态工程学院, 北京 100083
Research and application progress in ultra-high strength stainless steel for aircraft landing gear
WANG Xiao-hui, LUO Hai-wen
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3233 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 本文结合飞机起落架的设计理念,梳理了飞机起落架用超高强度钢及高强不锈钢的应用及发展历程,重点阐述了典型超高强度不锈钢的成分、组织和力学性能以及强韧化机理。建议通过材料热力学动力学计算创新设计新的超高强度不锈钢钢种;提出新型超高强度不锈钢的组织设计,将更关注多类型或高密度的共格析出强化以及高力学稳定性残余奥氏体的强韧化作用机制;最后指出采用最新的一些加工工艺技术,如等温多向锻造工艺技术,可显著提高超高强度不锈钢的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓辉
罗海文
关键词 超高强度不锈钢析出相强化机理残余奥氏体制备工艺    
Abstract:Based on the design concept of aircraft landing gear, the recent achievements in research and development on both ultra-high strength steels and ultra-high strength stainless steels (UHSSS) for the landing gear in aircraft were reviewed. The composition, microstructure and mechanical properties of typical commercial UHSSS grades that were produced and used were also summarized. It was then proposed that the future research on UHSSS with the improved combination of strength and toughness should focus on designing both composition and processes of new UHSSS grades by using the up-to-date material thermodynamic and kinetic calculations, particular attention should be paid to microstructural designing on either high density coherent or multi-type nanosized precipitation and the deliberate tailoring of retained austenite with enhanced mechanical stability for toughening; both of them could contribute to the strengthening and toughening of UHSSS. Finally, the updated hot working technology was put forward, the isothermal multi-direction forging, which could significantly improve the comprehensive mechanical properties of UHSSS.
Key wordsultra-high strength stainless steel    precipitation    strengthening mechanism    retained aus-tenite    manufacturing process
收稿日期: 2019-02-15      出版日期: 2019-09-18
中图分类号:  TG142.71  
基金资助: 
通讯作者: 罗海文(1972-),男,教授,博士,从事先进钢铁材料的研发,联系地址:北京市海淀区学院路30号北京科技大学冶金与生态工程学院(100083),E-mail:luohaiwen@ustb.edu.cn     E-mail: luohaiwen@ustb.edu.cn
引用本文:   
王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
WANG Xiao-hui, LUO Hai-wen. Research and application progress in ultra-high strength stainless steel for aircraft landing gear. Journal of Materials Engineering, 2019, 47(9): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000122      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/1
[1] 叶广宁,陈跃良.腐蚀和疲劳对飞机结构的挑战及解决思路[J].航空工程进展,2011,2(1):66-69. YE G N,CHEN Y L.Challenges and countermeasure invest-igation of corrosion and fatigue on aircraft structures[J].Advan-ces in Aeronautical Science and Engineering,2011,2(1):66-69.
[2] 姜越,尹钟大,朱景川,等.马氏体时效不锈钢的发展现状[J].特殊钢,2003,24(3):1-5. JIANG Y,YIN Z D,ZHU J C,et al.Development status of maraging stainless steel[J].Special Steel,2003,24(3):1-5.
[3] 杨志勇,刘振宝,梁剑雄,等.马氏体时效不锈钢的发展[J].材料热处理学报,2008,29(4):1-7. YANG Z Y,LIU Z B,LIANG J X,et al.Development of maraging stainless steel[J].Transactions of Materials and Heat Treatment,2008,29(4):1-7.
[4] WAND J,ZOU H,LI C,et al.The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350℃[J].Materials Characterization,2006,57(4):274-280.
[5] BHARGAVA A K,TIWARI A N.Rapid solidification of 17-7 PH stainless steel:heat treatment response[J]. International Journal of Rapid Solidification,1996,9(2):121-136.
[6] ZHANG T P,ZHAN D P,QI X W,et al.Austenite and precipi-tation in secondary-hardening ultra-high-strength stainless steel[J]. Materials Characterization,2018,144:393-399.
[7] ANIL K V,KARTHIKEYAN M K,GUPTA R K,et al.Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel[J].Materials Science Forum,2012,710:483-488.
[8] 刘振宝,梁剑雄,杨志勇,等.碳含量对15-5PH沉淀硬化不锈钢板材的组织与性能的影响[J].航空材料学报,2011,31(1):7-12. LIU Z B, LIANG J X, YANG Z Y, et al. Effect of carbon content on microstructure and mechanical properties of type 15-5PH precipitation hardened stainless steel[J].Journal of Aero-nautical Materials,2011,31(1):7-12.
[9] 周士猛,程兴旺,张由景,等. 新型超高强度钢的高温形变热处理[J]. 材料工程,2016,44(5):37-41. ZHOU S M,CHENG X W,ZHANG Y J,et al.High temperature thermo-mechanical treatment of novel ultra-high-strength steel[J].Journal of Materials Engineering,2016,44(5):37-41.
[10] 吴迪. 钨钼复合二次硬化超高强度钢析出相及热变形行为研究[D].秦皇岛:燕山大学,2016. WU D.Study on the precipitate characteristic and hot defor-mation behavior of a W-Mo compound secondary hardening ultrahigh strength stainless steel[D].Qinhuangdao:Yanshan University,2016.
[11] 李阿妮,厉勇,王春旭,等.Mo含量对AF1410钢二次硬化效果的影响[J].钢铁,2007,42(9):60-62. LI A N,LI Y,WANG C X,et al.Influence of Mo on secondary hardening behavior of ultra high strength AF1410 steel[J].Iron and Steel,2007,42(9):60-62.
[12] 李志,赵振业.AerMet100钢的研究与发展[J].航空材料学报,2006,26(3):265-270. LI Z,ZHAO Z Y.Research and development of AerMet100 steel[J].Journal of Aeronautical Materials,2006,26(3):265-270.
[13] 石琳.下一代飞机用超高强度钢[J].航空工程与维修,2000(3):39-40. SHI L.Ultra-high tensile steel for next generation aircraft[J].Aviation Engineering and Maintenance,2000(3):39-40.
[14] LEITNER H,SCHNITZER R,SCHOBER M,et al.Precipitate modification in PH13-8 Mo type maraging steel[J].Acta Materialia,2011,59(12):5012-5022.
[15] PING D H,OHNUMA M,HIRAKAWA Y,et al.Microstruc-tural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J].Materials Science and Engineering:A,2005,394(1/2):285-295.
[16] GUO Z,SHA W,VAUMOUSSE D.Microstructural evolution in a PH13-8 stainless steel after ageing[J].Acta Materialia,2003,51(1):101-116.
[17] RAVITEJ S V,MURTHY M,KRISHNAPPA M B.Review paper on optimization of process parameters in turning Custom 465® precipitation hardened stainless steel[J].Materials Today:Proceedings,2018,5(1):2787-2794.
[18] OLSON G B,KUEHMANN C J. Materials genomics:from CALPHAD to flight[J].Scripta Materialia,2014,70:25-30.
[19] 陆世英,张廷凯.不锈钢[M].北京:原子能出版社,1995:19-59. LU S Y,ZHANG T K.Stainless steel[M].Beijing:Atomic Energy Press,1995:19-59.
[20] 刘振宝,杨志勇,雍歧龙,等.1900MPa级超高强度不锈钢的研制[J].机械工程材料,2008,32(3):48-51. LIU Z B, YANG Z Y, YONG Q L,et al.A 1900 MPa grade ultra-high strength stainless steel[J].Materials for Mechanical Engineering,2008,32(3):48-51.
[21] LI Y,YAN W,COTTON J D,et al.A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J].Materials & Design,2015,82:56-63.
[22] GUO J,SHANG C J,YANG S W,et al.Effect of carbon content on mechanical properties and weather resistance of high perfor-mance bridge steels[J].Journal of Iron and Steel Research, International,2009,16(6):63-69.
[23] BENDEL L P,SARDELIS T A.Nickel titanium martensitic steel for surgical needles:US Patent 5000912[P].1991-03-19.
[24] BENDEL L P,SARDELIS T A,TROZZO LAWRENCE P,et al.Means for predicting performance of stainless steel alloy for use with surgical needles:US Patent 5651843[P].1997-07-29.
[25] ZYKOVA R A,SPEKTOR Y I,POLITAEV Y M.Effect of titanium on the structure and properties of maraging tool steel 05Kh12N6D2SGTMF[J].Metal Science and Heat Treatment,1986,28(9):682-686.
[26] VOZNESENSKAYA N M,KABLOV E N,PETRAKOV A F,et al.High-strength corrosion-resistant steels of the austenitic-martensitic class[J].Metal Science and Heat Treatment,2002,44(7/8):300-303.
[27] MINER R E,JANCKSON J K,GIBBONS D F.Internal friction in 18 Ni maraging steel[J].Transaction of AIME, 1966,236(11):1565-1570.
[28] 刘振宝,梁剑雄,杨志勇.Mo在马氏体沉淀硬化不锈钢中的作用与应用[J].连铸,2015,41(3):44-48. LIU Z B,LIANG J X,YANG Z Y.Effect and application of Mo in martensitic precipitation hardening stainless steel[J].Contin-uous Casting,2015,41(3):44-48.
[29] KWON H,LEE J H,LEE K B,et al.Effect of alloying additions on secondary hardening behavior of Mo-containing steels[J].Metallurgical and Materials Transactions A,1997,28(3):621-627.
[30] KAPOOR R,BATRA I S.On the α' to γ transformation in maraging (grade 350),PH 13-8 Mo and 17-4 PH steels[J].Materials Science and Engineering:A,2004,371(1):324-334.
[31] PALANISAMY D,SENTHIL P,SENTHILKUMAR V.The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel[J].Archives of Civil and Mechanical Engineering,2016,16(1):53-63.
[32] 王正樵,吴幼林.不锈钢[M].北京:化学工业出版社,1991. WANG Z Q,WU Y L.Stainless steel[M].Beijing:Chemical Industry Press,1991.
[33] HABIBI H R.Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J].Materials Letters,2005,59(14/15):1824-1827.
[34] WANG J S,MULHOLLAND M D,OLSON G B,et al.Predic-tion of the yield strength of a secondary-hardening steel[J].Acta Materialia,2013,61(13):4939-4952.
[35] LSELIE W C.Iron and its dilute substitutional solid solutions[J].Metallurgical Transactions,1972,3(1):5-26.
[36] GHOSH G,OLSON G B.Kinetics of F.C.C.→B.C.C. hetero-geneous martensitic nucleation-Ⅰ.The critical driving force for athermal nucleation[J].Acta Metallurgica et Materialia,1994,42(10):3361-3370.
[37] WANG G F,STRACHAN A,CAGIN T,et al.Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics:application to bcc tantalum[J].Modelling and Simulation in Materials Science and Engineering,2004,12(4):371-389.
[38] DIPIERRO S,PALATUCCI G,VALDINOCI E.Dislocation dyn-amics in crystals:a macroscopic theory in a fractional laplace setting[J].Communications in Mathematical Physics,2015,333(2):1061-1105.
[39] HE B B,HU B,YEN H W,et al.High dislocation density-induced large ductility in deformed and partitioned steels[J].Science,2017,357(6355):1029-1032.
[40] WANG C,WANG M,SHI J,et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J].Scripta Materialia,2008,58(6):492-495.
[41] MORITO S,TANAKA H,KONISHI R,et al.The morphology and crystallography of lath martensite in Fe-C alloys[J].Acta Materialia,2003,51(6):1789-1799.
[42] LIANG Y,LONG S,XU P,et al.The important role of marte-nsite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel[J].Materials Science and Engineering:A,2017,695:154-164.
[43] 王晓辉.超高强度不锈钢的成分与工艺对组织和性能影响的基础研究[D].北京:北京科技大学,2019. WANG X H.Composition, microstructure and properties of ultra-high strength stainless steel[D].Beijing:University of Science and Technology Beijing,2019.
[44] BAJGUIRANI H R H.The effect of ageing upon the micros-tructure and mechanical properties of type 15-5 PH stainless steel[J].Materials Science and Engineering:A,2002,338(1/2):142-159.
[45] BRATUKHIN A G.Ways to increase the reliability of welded joints of high-strength steels in a new generation of aircraft[J].Metal Science and Heat Treatment,1997,39(3):123-126.
[46] VOZNESENSKAYA N M,KABLOV E N,PETRAKOV A F,et al.High-strength corrosion-resistant steels of the austenitic-martensitic class[J].Metal Science and Heat Treatment,2002,44(7/8):300-303.
[47] KOSTINA M V,BANNYKH O A,BLINOV V M.Effect of plastic deformation and heat treatment on the structure and hardening of nitrogen-bearing steel 0Kh16AN4B[J].Metal Science and Heat Treatment,2001,43(7):259-262.
[48] IL'INA V P.Effect of heat treatment mode on the microstruc-ture and fracture behavior of maraging steels 03Kh11N10M2T-VD and 03Kh11N10M2T2-VD[J].Metal Science and Heat Treatment,2002,44(3/4):116-123.
[49] RUNDKVIST N A,GRACHEV S V.Effect of alloying and of the austenizing temperature on the phase composition and properties of corrosion-resistant maraging steels[J].Metal Science and Heat Treatment,1989,31(4):244-250.
[50] BEL'TYUKOV A A,STEPANOV V P,SHEIN A S.Effect of carbon on the properties of corrosion-resistant maraging steels without titanium[J].Metal Science and Heat Treatment,1989,31(11):830-832.
[51] LIU P,STIGENBERG A H,NILSSON J O.Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel[J].Acta Metallurgica et Materialia,1995,43(7):2881-2890.
[52] WEBSTER D.Optimization of strength and toughness in two high-strength stainless steels[J].Metallurgical Transactions,1971,2(7):1857-1862.
[53] COUTURIER L,GEUSER F D,DSECOINS M,et al.Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J].Materials & Design,2016,107:416-425.
[54] 梁剑雄,刘振宝,杨志勇,等.高强不锈钢的发展与应用技术[J].宇航材料工艺,2013,43(3):1-11. LIANG J X,LIU Z B,YANG Z Y,et al.Development and application of high strength stainless steel[J].Aerospace Materials and Technology, 2013, 43(3):1-11.
[55] SCHOBER M,SCHNITZER R,LRITNER H.Precipitation evol-ution in a Ti-free and Ti-containing stainless maraging steel[J].Ultramicroscopy,2009,109(5):553-562.
[56] OLSON G B. Genomic materials design:the ferrous frontier[J].Acta Materialia,2013,61(3):771-781.
[57] KUEHMANN C,TUFTS B,TRESTER P.Computational des-ign for ultra high-strength alloy[J].Advanced Materials and Process,2008,166(1):37-40.
[58] WANG C,ZHANG C,YANG Z,et al.Microstructure analysis and yield strength simulation in high Co-Ni secondary hardening steel[J].Materials Science and Engineering:A,2016,669:312-317.
[59] JIANG S H,WANG H,WU Y,et al.Ultra-strong steel via minimal lattice misfit and high-density nanoprecipitation[J].Nature,2017,544(7651):460-464.
[60] LI Y,LI W,LIU W Q,et al.The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J].Acta Materialia,2018,146:126-141.
[61] XIE K Y,ZHENG T,CAIRENG J M,et al.Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J].Scripta Mate-rialia,2012,66(9):710-713.
[62] ZHU Y S,HU B,LUO H W.Influence of Nb and V on microst-ructure and mechanical properties of hot-rolled medium Mn steels[J].Steel Research International,2018,89(9):1700389.
[63] SANKARAN K,MISHRA R S.Metallurgy and design of alloys with hierarchical microstructures[M].Amsterdam,Netherl-ands:Elsevier,2017:289-343.
[64] SAHA A,OLSON G B.Computer-aided design of transformation toughened blast resistant naval hull steels:part Ⅰ[J].Journal of Computer-Aided Materials Design,2007,14(2):177-200.
[1] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[2] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[3] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[4] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[7] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[8] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[9] 叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
[10] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[11] 方旭东, 王岩, 范光伟, 夏焱, 王志斌, 韩培德. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117.
[12] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[13] 乔瑞芳, 毕洪运, 陈玉喜. Ti,Nb和W复合强化超纯铁素体不锈钢的高温析出行为[J]. 材料工程, 2016, 44(5): 22-28.
[14] 王小江, 孙新军, 李昭东, 张正延, 雍岐龙, 李员妹. 卷取温度对高Nb微合金钢组织、力学性能及第二相析出的影响[J]. 材料工程, 2016, 44(2): 35-42.
[15] 马世榜, 苏彬彬, 王旭, 夏振伟, 刘敬, 徐杨. 基于激光熔覆SiC/Ni复合涂层的耐磨性[J]. 材料工程, 2016, 44(1): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn