Research and application progress in casting superalloys for industrial gas turbine blades
Liang LUO, Cheng-bo XIAO(), Jing-yang CHEN, Qing LI, Sheng-long DAI
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Advanced industrial gas turbines are becoming preferred devices for worldwide power generations and large ship power in recent decades due to its outstanding advantages of high thermal efficiency and low pollution. Casting superalloy is the key material for industrial gas turbine blades in hot section components, and to a certain extent their performance and preparation level determine the levels of power, efficiency and service life of the industrial gas turbines. This paper outlines the current research and application status and shows the development trends of manufacturing technology of casting superalloy for industrial gas turbines and turbine blades. In the future, technologies such as advanced directional solidification and "materials genome engineering" will be used in the research and manufacture of casting superalloy for industrial gas turbine blades. Meanwhile, the directional and single crystal superalloy will be used more and more widely in advanced industrial gas turbines.
KONTER M , THUMANN M . Materials and manufacturing of advanced industrial gas turbine components[J]. Journal of Materials Processing Technology, 2001, 117 (3): 386- 390.
doi: 10.1016/S0924-0136(01)00785-3
JIANG H D , REN J , LI X Y , et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34 (29): 5096- 5102.
4
REED R C . The superalloys: fundamentals and applications[M]. Cambridge, UK: Cambridge University Press, 2006.
5
POLLOCK T M , TIN S . Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22 (2): 361- 374.
doi: 10.2514/1.18239
LIU L Y , GAO X Y , YANG X F , et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2018, 46 (2): 128- 133.
HU C Y , LIU X L , TAO C H , et al. Influence of cooling holes distribution on high cycle fatigue fracture behavior of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2017, 45 (4): 84- 89.
CAO L M , TANG X , ZHANG Y , et al. Progress of advanced near net-shape investment casting technology of superalloys[J]. Journal of Aeronautical Materials, 2006, 26 (3): 238- 243.
doi: 10.3969/j.issn.1005-5053.2006.03.050
9
SINGH K . Advanced materials for land based gas turbines[J]. Transactions of the Indian Institute of Metals, 2014, 67 (5): 601- 615.
doi: 10.1007/s12666-014-0398-3
10
SHAH D M, CETEL A. Evaluation of PWA1483 for large single crystal IGT blade applications[C]// Superalloys 2000. Warrendale: Minerals, Metals & Materials Soc, 2000: 295-304.
11
HARRIS K, ERICKSON G L, SIKKENGA S L, et al. Develo-pment of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines[C]// Superalloys 1992. Warrendale: Minerals, Metals & Materials Soc, 1992: 297-306.
12
CHERUVU N S , CHAN K S , VISWANATHAN R . Evalua-tion, degradation and life assessment of coatings for land based combustion turbines[J]. Energy Materials, 2006, 1 (1): 33- 47.
DU J W , TANG J H , LI N . Study on the development status and trend of foreign marine power plant technology[J]. Ship Science and Technology, 2010, 32 (8): 13- 19.
doi: 10.3404/j.issn.1672-7649.2010.08.003
JI G M , LI H W . Forecast of the technology and application of ship gas turbine[J]. Ship Science and Technology, 2000, (5): 36- 40.
15
MAEKAWA A . Evolution and future trend of large frame gas turbine for power generation[J]. Journal of Power and Energy Systems, 2011, 5 (2): 161- 170.
doi: 10.1299/jpes.5.161
CHEN G F . Current status and developing trend of materials in heavy duty gas turbine for power generation[J]. Power Generation Technology of Gas Turbine, 2008, 10 (3/4): 310- 313.
WEN X Y , WANG M W , LIU P D . R&D plan for next-generation marine gas turbine of Japan[J]. Ship Engineering, 2003, 25 (1): 6- 8.
doi: 10.3969/j.issn.1000-6982.2003.01.002
WANG W W , GUO Q , HUANG S Z . Advanced management method of IHPTET program[J]. Gas Turbine Experiment and Research, 2011, 24 (2): 58- 62.
doi: 10.3969/j.issn.1672-2620.2011.02.015
REN W P , LI Q , XIAO C B , et al. Oxidation behavior of CoCrAlY bond coating for thermal barrier coating on DZ466 super alloy at 1050℃[J]. Materials Engineering, 2014, (6): 74- 78.
REN W P , LI Q , HUANG Q , et al. Oxidation and microstructure evolution of CoAl coating on directionally solidified Ni-based superalloys DZ466[J]. Acta Metallurgica Sinica, 2018, 54 (4): 566- 574.
CHEN J Y , WU W J , LI Q , et al. Effect of withdrawal rate of LMC process on microstructure and stress-rupture property of DD488 single crystal superalloy[J]. Heat Treatment of Metals, 2018, 43 (6): 111- 116.
23
LUO L , XIAO C B , CHEN J Y , et al. Effect of directional solidification process on microstructure and stress rupture property of a hot corrosion resistant single crystal superalloy[J]. China Foundry, 2019, 16 (1): 8- 13.
doi: 10.1007/s41230-019-8142-6
LI H , REN J J , LOU L H , et al. Effect of solution treatment on microstructure and properties of DSM11 alloy[J]. Journal of Iron and Steel Research, 2003, 15 (7): 212- 215.
ZHANG Y J , LIU L , SHI X J , et al. Effeet of middle heat treatment temperature on microstructure and properties of alloy DSM11[J]. Journal of Iron and Steel Research, 2003, 15 (7): 216- 218.
LI H, LOU L H, SHI X J, et al. γ' coarsening and stress rupture property of DZ411(DSM11) alloy[C]// The 11th meeting on superalloys in China. Shanghai: Superalloy Division of the Chinese Society for Metals, 2007: 392-394.
ZENG G L , GUAN H R , SUN X F , et al. Na2SO4-induced hot corrosion of superalloys DD8 and DZ38G[J]. Corrosion Science and Protection Technique, 1993, 5 (2): 81- 86.
28
CHENG K Y , KIM D H , YOO Y S , et al. Microstructural stability of a single crystal superalloy DD8 during thermal exposure[J]. Journal of Materials Science & Technology, 2008, 24 (1): 127- 130.
29
LIU F , WANG Z G , AI S H , et al. Thermo-mechanical fatigue of single crystal nickel-based superalloy DD8[J]. Scripta Materialia, 2003, 48 (9): 1265- 1270.
doi: 10.1016/S1359-6462(03)00051-4
CONG P J , HOU J S , ZHOU L Z , et al. Effects of disorientation on tensile properties of hot corrosion resistant single crystal superalloy DD483[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (4): 747- 753.
MA D X , ZHANG Q Y , WANG H Y , et al. Influence of process condition on the stray grain formation in the single crystal blades of Ni-base superalloy DD483[J]. Foundry, 2017, 66 (5): 439- 444.
doi: 10.3969/j.issn.1001-4977.2017.05.001
32
IBANEZ A R , SRINIVASAN V S , SAXENA A . Creep defor-mation and rupture behaviour of directionally solidified GTD 111 superalloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29 (12): 1110- 1020.
33
STEWART C M , GORDON A P , HOGAN E A , et al. Characterization of the creep deformation and rupture behavior of DS GTD-111 using the Kachanov-Rabotnov constitutive model[J]. Journal of Engineering Materials and Technology, 2011, 133 (2): 021013- 1.
doi: 10.1115/1.4003111
34
WALSTON W S, O'HARA K S, ROSS E W, et al. René N6: third generation single crystal superalloy[C]// Superalloys 1996. Warrendale: Minerals, Metals & Materials Soc, 1996: 27-34.
35
GIAMEI A F , TSCHINKEL J G . Liquid metal cooling: A new solidification technique[J]. Metallurgical Transactions A, 1976, 7 (9): 1427- 1434.
doi: 10.1007/BF02658829
36
ELLIOTT A J , POLLOCK T M , TIN S , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004, 35 (10): 3221- 3231.
doi: 10.1007/s11661-004-0066-z
37
KONTER M, KARTS E, HOFMANN N. A novel casting process for single crstal gas turbine components[C]// Super-alloys 2000. Warrendale: Minerals, Metals & Materials Soc, 2000: 189-200.
38
MA D . Novel casting processes for single-crystal turbine blades of superalloys[J]. Frontiers of Mechanical Engineering, 2018, 13 (1): 3- 16.
39
MA D , LU H , POLACZEK A B . Experimental trials of the thin shell casting (TSC) technology for directional solidification[J]. IOP Conference Series: Materials Science and Engineering, 2011, 27, 1- 6.
40
MA D, WANG F, WU Q, et al. Innovations in casting techniques for single crystal turbune blades of superalloys[C]// Superalloys 2016. Warrendale: Minerals, Metals & Materials Soc, 2016: 237-246.
41
WANG F , MA D X , ZHANG J , et al. A high thermal gradient directional solidification method for growing superalloy single crystals[J]. Journal of Materials Processing Technology, 2014, 214 (12): 3112- 3121.
doi: 10.1016/j.jmatprotec.2014.07.020
42
HOFMEISTER M , FRANKE M M , KOERNER C , et al. Single crystal casting with fluidized carbon bed cooling: a process innovation for quality improvement and cost reduction[J]. Metallurgical and Materials Transactions B, 2017, 48 (6): 3132- 3142.
doi: 10.1007/s11663-017-1110-x
43
LIU C , SHEN J , ZHANG J , et al. Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC[J]. Journal of Materials Science and Technology, 2010, 26 (4): 306- 310.
doi: 10.1016/S1005-0302(10)60050-3
44
LIU C , LI K , SHEN J , et al. Improved castability of directio-nally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metallurgical and Materials Transactions A, 2012, 43 (2): 405- 409.
doi: 10.1007/s11661-011-1023-2
LIU J H , LIU L , HUANG T W , et al. Development of directional solidification equipment with liquid metal cooling[J]. Foundry, 2010, 59 (8): 822- 825.
GUO R F , LIU L , LI Y F , et al. Numerical simulation of temperature field and grain texture during casting single crystal superalloy DD403 with liquid metal cooling[J]. Foundry, 2014, 63 (2): 145- 151.
47
LIU X F , LOU Y C , YU B , et al. Directional solidification casting technology of heavy-duty gas turbine blade with liquid metal cooling (LMC) process[J]. China Foundry, 2019, 16 (1): 23- 30.
doi: 10.1007/s41230-019-8121-y
48
武魏楠. 暴利燃机[J]. 能源, 2015, (5): 32- 40.
48
WU W N . Windfall profit of gas turbine[J]. Energy, 2015, (5): 32- 40.
49
BACKMAN D G , WEI D Y , WHITIS D D , et al. ICME at GE: accelerating the insertion of new materials and processes[J]. JOM, 2006, 58 (11): 36- 41.
doi: 10.1007/s11837-006-0225-3
50
REED R C , TAO T , WARNKEN N . Alloys-by-design: applic-ation to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57 (19): 5898- 5913.
doi: 10.1016/j.actamat.2009.08.018
WANG X , ZHU L L , FANG J , et al. Applications of "materials genome engineering" based methods in nickel-based superalloys[J]. Science & Technology Review, 2015, 33 (10): 79- 86.
doi: 10.3981/j.issn.1000-7857.2015.10.007