Please wait a minute...
材料工程  2019, Vol. 47 Issue (8): 13-21    DOI: 10.11868/j.issn.1001-4381.2019.000129
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
黄贤凯1,2, 邵泽超2, 常增花2, 王建涛1,2
1. 北京有色金属研究总院, 北京 100088;
2. 国联汽车动力电池研究院有限责任公司, 北京 101400
Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode
HUANG Xian-kai1,2, SHAO Ze-chao2, CHANG Zeng-hua2, WANG Jian-tao1,2
1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 101400, China
全文: PDF(15902 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了导电炭黑Super P的添加量对高电压富锂锰基层状氧化物电极电化学性能的影响,采用SEM和交流阻抗分析Super P添加量影响电极性能的原因。结果表明:高电压富锂锰基层状氧化物电极的倍率性能及循环性能均随Super P添加量增加呈先提高后降低的趋势,其中添加5%(质量分数,下同)Super P的电极具有最优的循环性能和倍率放电性能。这是因为提高Super P添加量能够增加Super P颗粒与富锂锰基层状氧化物颗粒之间的电接触,从而在电极中构建更为完善的电子导电网络,降低电极内部组分之间的阻抗,减小电极的极化,然而Super P添加量超过5%时,易发生团聚,不利于其充分发挥导电作用。
E-mail Alert
关键词 富锂锰基层状氧化物电极导电炭黑电化学性能极化锂离子电池    
Abstract:High voltage Li- and Mn-rich layered oxide (LMRO) electrodes with different amount of conductive carbon black Super P were investigated to explore the effect of carbon black on electrochemical performance of the electrode and scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) were utilized to study the internal reason why the amount of Super P affects the performance of the electrode. The results show that the performance of cycle stability and high-rate capability of LMRO electrodes exhibit the tendency of increasing first and then decreasing with increase of Super P content, while the optimum performance of electrodes is obtained at 5% (mass fraction,the same below). With the increase of Super P content, electronic contact between LMRO particles and Super P particles can be improved, electrically conductive network can be constructed, resistance between electrode components can be decreased, and electrode polarization can be reduced. However, when the content is higher than 5%, Super P particles are easily agglomerated, which is undesirable for further improving the conductivity of electrode.
Key wordsLi- and Mn-rich layered oxide electrode    conductive carbon black    electrochemical performance    polarization    lithium ion battery
收稿日期: 2019-02-17      出版日期: 2019-08-22
中图分类号:  TM912  
通讯作者: 王建涛(1983-),男,博士,教授,研究方向为锂离子动力电池及关键材料,联系地址:北京市怀柔区雁栖经济开发区兴科东大街11号北京有色金属研究总院(101400),     E-mail:
黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
HUANG Xian-kai, SHAO Ze-chao, CHANG Zeng-hua, WANG Jian-tao. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode. Journal of Materials Engineering, 2019, 47(8): 13-21.
链接本文:      或
[1] NITTA N,WU F,LEE J T,et al.Li-ion battery materials:present and future[J].Materials Today,2015,18(5):252-264.
[2] DIOUF B,PODE R.Potential of lithium-ion batteries in renewable energy[J].Renewable Energy,2015,76:375-380.
[3] MEISTER P,JIA H,LI J,et al.Best practice:performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J].Chemistry of Materials,2016,28(20):7203-7217.
[4] ZHANG X,SHI J,LIANG J,et al.Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J].Advanced Materials,2018,30(29):1801751.
[5] MANTHIRAM A,KNIGHT J C,MYUNG S,et al.Nickel-rich and lithium-rich layered oxide cathodes:progress and perspectives[J].Advanced Energy Materials,2016,6(1):1501010.
[6] NAYAK P K,ERICKSON E M,SCHIPPER F,et al.Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J].Advanced Energy Materials,2018,8(8):1702397.
[7] BAUER W,NÖTZEL D,WENZEL V,et al.Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J].Journal of Power Sources,2015,288:359-367.
[8] NING G,ZHANG S,XIAO Z,et al.Efficient conducting networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes[J].Carbon,2018,132:323-328.
[9] NISHI T,NAKAI H,KITA A.Visualization of the state-of-charge distribution in a LiCoO2 cathode by in situ Raman imaging[J].Journal of the Electrochemical Society,2013,160(10):A1785-A1788.
[10] GUO H,SONG X,ZHENG J,et al.Excess lithium storage in LiFePO4-carbon interface by ball-milling[J].Functional Mate-rials Letters,2016,9(5):1650053.
[11] LI Y,MEYER S,LIM J,et al.Effects of particle size,electronic connectivity,and incoherent nanoscale domains on the sequence of lithiation in LiFePO4 porous electrodes[J].Advanced Mate-rials,2015,27(42):6591-6597.
[12] LIU Z,HAN K,CHEN-WIEGART Y K,et al.X-ray nanoto-mography analysis of the microstructural evolution of LiMn2O4 electrodes[J].Journal of Power Sources,2017,360:460-469.
[13] BUROW D,SERGEEVA K,CALLES S,et al.Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J].Journal of Power Sources,2016,307:806-814.
[14] LI X,YAN C,WANG J,et al.Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon[J].Adva-nced Energy Materials,2015,5(4):1401556.
[15] QI X,BLIZANAC B,DUPASQUIER A,et al.Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries[J].Carbon,2013,64:334-340.
[16] MAEYOSHI Y,MIYAMOTO S,MUNAKATA H,et al.Effect of conductive carbon additives on electrochemical performance of LiCoPO4[J].Journal of Power Sources,2018,376:18-25.
[17] OH S M,OH S W,YOON C,et al.High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J].Advanced Functional Materials,2010,20(19):3260-3265.
[18] SONG B,LIU H,LIU Z,et al.High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J].Scientific Reports,2013,3:3094.
[19] TANG R,YUN Q,LV W,et al.How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries[J].Carbon,2016,103:356-362.
[20] SHI Y,WEN L,PEI S,et al.Choice for graphene as conductive additive for cathode of lithium-ion batteries[J].Journal of Energy Chemistry,2019,30:19-26.
[21] DENG Y,ZHANG Q,SHI Z,et al.Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres[J].Electrochimica Acta,2012,76:495-503.
[22] CHO I,CHOI J,KIM K,et al.A comparative investigation of carbon black(Super P)and vapor-grown carbon fibers(VGCFs)as conductive additives for lithium-ion battery cathodes[J].Rsc Advances,2015,5(115):95073-95078.
[23] NARAYANRAO R,JOGLEKAR M M,INGUVA S.A phenomenological degradation model for cyclic aging of lithium ion cell materials[J].Journal of the Electrochemical Society,2013,160(1):A125-A137.
[24] JI X,NAZAR L F.Advances in Li-S batteries[J].Journal of Materials Chemistry,2010,20(44):9821-9826.
[25] ZHONG Z,YE N,WANG H,et al.Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3-LiNi0.5Mn0.5O2 cathode material for Li-ion batteries[J].Chemical Engineering Journal,2011,175:579-584.
[26] LIN J,MU D,JIN Y,et al.Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J].Journal of Power Sources,2013,230:76-80.
[27] 严武渭,柳永宁,崇少坤,等.高能量密度锂离子电池用富锂正极材料[J].化学进展,2017,29(2/3):198-209. YAN W W,LIU Y N,CHONG S K,et al.Lithium-rich cathode materials for high energy-density lithium-ion batteries[J].Progress in Chemistry,2017,29(2/3):198-209.
[28] LI X,QIAO Y,GUO S,et al.Direct visualization of the revers-ible O2-/O- redox process in Li-rich cathode materials[J].Advanced Materials,2018,30(14):1705197.
[29] GUO S,ZHAO S,BI K,et al.Research on electrochemical properties and fade mechanisms of Li-rich cathode materials at low-temperature[J].Electrochimica Acta,2016,222:1733-1740.
[30] CHONG S,CHEN Y,YAN W,et al.Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J].Journal of Power Sources,2016,332:230-239.
[31] SU F,YOU C,HE Y,et al.Flexible and planar graphene conductive additives for lithium-ion batteries[J].Journal of Materials Chemistry,2010,20(43):9644-9650.
[32] LIU C,NEALE Z G,CAO G.Understanding electrochemical potentials of cathode materials in rechargeable batteries[J].Materials Today,2016,19(2):109-123.
[33] XIA M,LIU Q,ZHOU Z,et al.A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator[J].Journal of Power Sources,2014,266:29-35.
[34] WANG L,ZHANG B,PANG J,et al.Aging process analysis of LiNi0.88Co0.09Al0.03O2/graphite-SiOx pouch cell[J].Electroch-imica Acta,2018,286:219-230.
[35] XU J,DESHPANDE R D,PAN J,et al.Electrode side reactions,capacity loss and mechanical degradation in lithium-ion batteries[J].Journal of the Electrochemical Society,2015,162(10):A2026-A2035.
[36] ZHANG H,ZHANG W,CHENG J,et al.Acetylene black agglomeration in activated carbon based electrochemical double layer capacitor electrodes[J].Solid State Ionics,2008,179(33):1946-1950.
[37] 庄全超,徐守冬,邱祥云,等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1057. ZHUANG Q C,XU S D,QIU X Y,et al.Electrochemical impedance spectroscopy in lithium ion batteries diagnosis[J].Progress in Chemistry,2010,22(6):1044-1057.
[38] BARRé A,DEGUILHEM B,GROLLEAU S,et al.A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J].Journal of Power Sources,2013,241:680-689.
[39] VETTER J,NOVáK P,WAGNER M R,et al.Ageing mech-anisms in lithium-ion batteries[J].Journal of Power Sources,2005,147(1):269-281.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[3] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[4] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[5] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[6] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[7] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[8] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[9] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[10] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[11] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[12] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[13] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[14] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[15] 李妍, 付东旭, 张青松, 竺云. 单/双离子替代对铁酸铋薄膜性能影响的研究进展[J]. 材料工程, 2019, 47(5): 10-17.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持