Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 13-21    DOI: 10.11868/j.issn.1001-4381.2019.000129
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
导电炭黑对富锂锰基层状氧化物电极性能的影响
黄贤凯1,2, 邵泽超2, 常增花2, 王建涛1,2
1. 北京有色金属研究总院, 北京 100088;
2. 国联汽车动力电池研究院有限责任公司, 北京 101400
Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode
HUANG Xian-kai1,2, SHAO Ze-chao2, CHANG Zeng-hua2, WANG Jian-tao1,2
1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 101400, China
全文: PDF(15902 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了导电炭黑Super P的添加量对高电压富锂锰基层状氧化物电极电化学性能的影响,采用SEM和交流阻抗分析Super P添加量影响电极性能的原因。结果表明:高电压富锂锰基层状氧化物电极的倍率性能及循环性能均随Super P添加量增加呈先提高后降低的趋势,其中添加5%(质量分数,下同)Super P的电极具有最优的循环性能和倍率放电性能。这是因为提高Super P添加量能够增加Super P颗粒与富锂锰基层状氧化物颗粒之间的电接触,从而在电极中构建更为完善的电子导电网络,降低电极内部组分之间的阻抗,减小电极的极化,然而Super P添加量超过5%时,易发生团聚,不利于其充分发挥导电作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄贤凯
邵泽超
常增花
王建涛
关键词 富锂锰基层状氧化物电极导电炭黑电化学性能极化锂离子电池    
Abstract:High voltage Li- and Mn-rich layered oxide (LMRO) electrodes with different amount of conductive carbon black Super P were investigated to explore the effect of carbon black on electrochemical performance of the electrode and scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) were utilized to study the internal reason why the amount of Super P affects the performance of the electrode. The results show that the performance of cycle stability and high-rate capability of LMRO electrodes exhibit the tendency of increasing first and then decreasing with increase of Super P content, while the optimum performance of electrodes is obtained at 5% (mass fraction,the same below). With the increase of Super P content, electronic contact between LMRO particles and Super P particles can be improved, electrically conductive network can be constructed, resistance between electrode components can be decreased, and electrode polarization can be reduced. However, when the content is higher than 5%, Super P particles are easily agglomerated, which is undesirable for further improving the conductivity of electrode.
Key wordsLi- and Mn-rich layered oxide electrode    conductive carbon black    electrochemical performance    polarization    lithium ion battery
收稿日期: 2019-02-17      出版日期: 2019-08-22
中图分类号:  TM912  
通讯作者: 王建涛(1983-),男,博士,教授,研究方向为锂离子动力电池及关键材料,联系地址:北京市怀柔区雁栖经济开发区兴科东大街11号北京有色金属研究总院(101400),E-mail:jiantaowang2002@126.com     E-mail: jiantaowang2002@126.com
引用本文:   
黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
HUANG Xian-kai, SHAO Ze-chao, CHANG Zeng-hua, WANG Jian-tao. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode. Journal of Materials Engineering, 2019, 47(8): 13-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000129      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/13
[1] NITTA N,WU F,LEE J T,et al.Li-ion battery materials:present and future[J].Materials Today,2015,18(5):252-264.
[2] DIOUF B,PODE R.Potential of lithium-ion batteries in renewable energy[J].Renewable Energy,2015,76:375-380.
[3] MEISTER P,JIA H,LI J,et al.Best practice:performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J].Chemistry of Materials,2016,28(20):7203-7217.
[4] ZHANG X,SHI J,LIANG J,et al.Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J].Advanced Materials,2018,30(29):1801751.
[5] MANTHIRAM A,KNIGHT J C,MYUNG S,et al.Nickel-rich and lithium-rich layered oxide cathodes:progress and perspectives[J].Advanced Energy Materials,2016,6(1):1501010.
[6] NAYAK P K,ERICKSON E M,SCHIPPER F,et al.Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J].Advanced Energy Materials,2018,8(8):1702397.
[7] BAUER W,NÖTZEL D,WENZEL V,et al.Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J].Journal of Power Sources,2015,288:359-367.
[8] NING G,ZHANG S,XIAO Z,et al.Efficient conducting networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes[J].Carbon,2018,132:323-328.
[9] NISHI T,NAKAI H,KITA A.Visualization of the state-of-charge distribution in a LiCoO2 cathode by in situ Raman imaging[J].Journal of the Electrochemical Society,2013,160(10):A1785-A1788.
[10] GUO H,SONG X,ZHENG J,et al.Excess lithium storage in LiFePO4-carbon interface by ball-milling[J].Functional Mate-rials Letters,2016,9(5):1650053.
[11] LI Y,MEYER S,LIM J,et al.Effects of particle size,electronic connectivity,and incoherent nanoscale domains on the sequence of lithiation in LiFePO4 porous electrodes[J].Advanced Mate-rials,2015,27(42):6591-6597.
[12] LIU Z,HAN K,CHEN-WIEGART Y K,et al.X-ray nanoto-mography analysis of the microstructural evolution of LiMn2O4 electrodes[J].Journal of Power Sources,2017,360:460-469.
[13] BUROW D,SERGEEVA K,CALLES S,et al.Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J].Journal of Power Sources,2016,307:806-814.
[14] LI X,YAN C,WANG J,et al.Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon[J].Adva-nced Energy Materials,2015,5(4):1401556.
[15] QI X,BLIZANAC B,DUPASQUIER A,et al.Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries[J].Carbon,2013,64:334-340.
[16] MAEYOSHI Y,MIYAMOTO S,MUNAKATA H,et al.Effect of conductive carbon additives on electrochemical performance of LiCoPO4[J].Journal of Power Sources,2018,376:18-25.
[17] OH S M,OH S W,YOON C,et al.High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J].Advanced Functional Materials,2010,20(19):3260-3265.
[18] SONG B,LIU H,LIU Z,et al.High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J].Scientific Reports,2013,3:3094.
[19] TANG R,YUN Q,LV W,et al.How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries[J].Carbon,2016,103:356-362.
[20] SHI Y,WEN L,PEI S,et al.Choice for graphene as conductive additive for cathode of lithium-ion batteries[J].Journal of Energy Chemistry,2019,30:19-26.
[21] DENG Y,ZHANG Q,SHI Z,et al.Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres[J].Electrochimica Acta,2012,76:495-503.
[22] CHO I,CHOI J,KIM K,et al.A comparative investigation of carbon black(Super P)and vapor-grown carbon fibers(VGCFs)as conductive additives for lithium-ion battery cathodes[J].Rsc Advances,2015,5(115):95073-95078.
[23] NARAYANRAO R,JOGLEKAR M M,INGUVA S.A phenomenological degradation model for cyclic aging of lithium ion cell materials[J].Journal of the Electrochemical Society,2013,160(1):A125-A137.
[24] JI X,NAZAR L F.Advances in Li-S batteries[J].Journal of Materials Chemistry,2010,20(44):9821-9826.
[25] ZHONG Z,YE N,WANG H,et al.Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3-LiNi0.5Mn0.5O2 cathode material for Li-ion batteries[J].Chemical Engineering Journal,2011,175:579-584.
[26] LIN J,MU D,JIN Y,et al.Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery[J].Journal of Power Sources,2013,230:76-80.
[27] 严武渭,柳永宁,崇少坤,等.高能量密度锂离子电池用富锂正极材料[J].化学进展,2017,29(2/3):198-209. YAN W W,LIU Y N,CHONG S K,et al.Lithium-rich cathode materials for high energy-density lithium-ion batteries[J].Progress in Chemistry,2017,29(2/3):198-209.
[28] LI X,QIAO Y,GUO S,et al.Direct visualization of the revers-ible O2-/O- redox process in Li-rich cathode materials[J].Advanced Materials,2018,30(14):1705197.
[29] GUO S,ZHAO S,BI K,et al.Research on electrochemical properties and fade mechanisms of Li-rich cathode materials at low-temperature[J].Electrochimica Acta,2016,222:1733-1740.
[30] CHONG S,CHEN Y,YAN W,et al.Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries[J].Journal of Power Sources,2016,332:230-239.
[31] SU F,YOU C,HE Y,et al.Flexible and planar graphene conductive additives for lithium-ion batteries[J].Journal of Materials Chemistry,2010,20(43):9644-9650.
[32] LIU C,NEALE Z G,CAO G.Understanding electrochemical potentials of cathode materials in rechargeable batteries[J].Materials Today,2016,19(2):109-123.
[33] XIA M,LIU Q,ZHOU Z,et al.A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator[J].Journal of Power Sources,2014,266:29-35.
[34] WANG L,ZHANG B,PANG J,et al.Aging process analysis of LiNi0.88Co0.09Al0.03O2/graphite-SiOx pouch cell[J].Electroch-imica Acta,2018,286:219-230.
[35] XU J,DESHPANDE R D,PAN J,et al.Electrode side reactions,capacity loss and mechanical degradation in lithium-ion batteries[J].Journal of the Electrochemical Society,2015,162(10):A2026-A2035.
[36] ZHANG H,ZHANG W,CHENG J,et al.Acetylene black agglomeration in activated carbon based electrochemical double layer capacitor electrodes[J].Solid State Ionics,2008,179(33):1946-1950.
[37] 庄全超,徐守冬,邱祥云,等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1057. ZHUANG Q C,XU S D,QIU X Y,et al.Electrochemical impedance spectroscopy in lithium ion batteries diagnosis[J].Progress in Chemistry,2010,22(6):1044-1057.
[38] BARRé A,DEGUILHEM B,GROLLEAU S,et al.A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J].Journal of Power Sources,2013,241:680-689.
[39] VETTER J,NOVáK P,WAGNER M R,et al.Ageing mech-anisms in lithium-ion batteries[J].Journal of Power Sources,2005,147(1):269-281.
[1] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[2] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[3] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[4] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[5] 李妍, 付东旭, 张青松, 竺云. 单/双离子替代对铁酸铋薄膜性能影响的研究进展[J]. 材料工程, 2019, 47(5): 10-17.
[6] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[7] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[8] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[9] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[10] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[11] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[12] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[13] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[14] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[15] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn