Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 138-143    DOI: 10.11868/j.issn.1001-4381.2019.000142
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响
王欣1,2, 许春玲1,2, 李臻熙1, 裴传虎1, 汤智慧1,2
1. 中国航发北京航空材料研究院, 北京 100095;
2. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护重点实验室, 北京 100095
Effect of shot peening intensity and surface coverage on room-temperature fatigue property of TC4 titanium alloy
WANG Xin1,2, XU Chun-ling1,2, LI Zhen-xi1, PEI Chuan-hu1, TANG Zhi-hui1,2
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Key Laboratory of Advanced Corrosion and Protection on Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3936 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多种喷丸强度和表面覆盖率对TC4钛合金进行喷丸。对比了表面粗糙度、残余应力场和表面形貌,并分析了室温旋弯疲劳性能。结果表明,表面粗糙度、残余压应力深度和最大残余应力位置随强度增大而增大,表面残余应力数值随喷丸强度增大而减小。覆盖率较大时,表面出现金属折叠形貌。喷丸强化提高了旋弯疲劳性能。相比于磨削状态的中值疲劳估计量5.06×104周次,0.12 mmA强度喷丸后提高到5.12×106~5.28×106周次,而0.25 mmA强度喷丸后为3.28×106~4.23×106周次,疲劳寿命随强度增大而下降。覆盖率增大对于低强度(0.12 mmA)喷丸疲劳寿命无明显影响,而强度较高(0.25 mmA)时,当表面覆盖率由125%提高到600%时,疲劳寿命由4.23×106周次下降到3.28×106周次。在考虑外载表面应力集中和喷丸残余应力的前提下,计算了喷丸后实际应力较大的危险截面位置,并采用断口分析进行验证。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王欣
许春玲
李臻熙
裴传虎
汤智慧
关键词 TC4钛合金喷丸喷丸强度表面覆盖率疲劳    
Abstract:TC4 titanium alloy was shot-peened by multiple kinds of intensity and surface coverage. Surface roughness and topography, residual stress profile were compared. Moreover room-temperature rotating-bending fatigue property was tested. The results show when the intensity is raised, the surface roughness, the depth of residual compressive stress depth and the location of the maximum residual stress are increased and the surface residual stress is decreased. The enfoldment appears on the surface with the increase of surface coverage. Rotating-bending fatigue property is enhanced by shot-peening. Compared with median fatigue life estimated value of 5.06×104 cycles at grinding state, the fatigue cycles ranges are raised to 5.12×106-5.28×106 cycles after shot-peened at the intensity 0.12 mmA and 3.28×106-4.23×106 cycles at 0.25 mmA, indicating that the fatigue property is decreased with the increase of the intensity. By comparison, when the intensity is low (0.12 mmA), the coverage has no impact on the fatigue property. However, fatigue cycles decline from 4.23×106 cycles to 3.28×106 cycles when the coverage is inclined from 125% to 600% and the intensity is relatively high (0.25 mmA). Furthermore, on the premise of considering the surface stress concentration of the external load and the residual stress of shot peening, the position of the dangerous section with large actual stress after shot peening is calculated and verified by the fracture analysis.
Key wordsTC4 titanium alloy    shot peening    shot peening intensity    surface coverage    fatigue
收稿日期: 2019-02-21      出版日期: 2020-09-17
中图分类号:  TG66  
通讯作者: 王欣(1983-),男,研究员,博士,研究方向为抗疲劳表面强化技术,联系地址:北京市81信箱5分箱(100095),E-mail:rasheed990918@163.com     E-mail: rasheed990918@163.com
引用本文:   
王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
WANG Xin, XU Chun-ling, LI Zhen-xi, PEI Chuan-hu, TANG Zhi-hui. Effect of shot peening intensity and surface coverage on room-temperature fatigue property of TC4 titanium alloy. Journal of Materials Engineering, 2020, 48(9): 138-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000142      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/138
[1] GERIN B, PESSARD E, MOREL F, et al. Influence of surface integrity on the fatigue behaviour of a hot-forged and shot-peened C70 steel component[J]. Materials Science and Engineering:A, 2017, 686:121-133.
[2] 王欣,尤宏德,李嘉荣,等. 陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响[J]. 材料工程, 2014, 21(4):53-57. WANG X, YOU H D, LI J R, et al. Influence of ceramic-shot-peening on surface integrity of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2014, 21(4):53-57.
[3] LINDEMANN J, BUQUE C, APPEL F. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia, 2006, 54(4):1155-1164.
[4] 罗学昆,王强,汤智慧,等. 激光冲击强化对Ti-6Al-4V合金表面完整性及疲劳性能的影响[J]. 钛工业进展, 2016, 33(2):33-37. LUO X K, WANG Q, TANG Z H, et al. Effect of laser shock peening on surface integrity and fatigue property of Ti-6Al-4V alloy[J] Titanium Industry Progress, 2016, 33(2):33-37.
[5] LI H, LIU Y, LI M, et al. The gradient crystalline structure and microhardness in the treated layer of TC17via high energy shot peening[J]. Applied Surface Science, 2015, 357:197-203.
[6] 吴凌飞,王强,张志刚,等. 喷丸强度对不同粗糙度表面超高强度钢疲劳性能的影响[J]. 材料保护, 2014, 47(8):46-50. WU L F, WANG Q, ZHANG Z G, et al. Effect of shot peening intensity on fatigue properties of ultra high strength steel with different surface roughness[J]. Materials Protection, 2014, 47(8):46-50.
[7] SEGURADO E, BELZUNCE F J, PARIENTE I F. Effects of low intensity shot peening treatments applied with different types of shots on the fatigue performance of a high-strength steel[J]. Surface & Coatings Technology, 2018, 340(25):25-35.
[8] GUAGLIANO M. Relating Almen intensity to residual stresses induced by shot peening:a numerical approach[J]. Journal of Materials Processing Tech, 2001, 110(3):277-286.
[9] 王欣,李臻熙,陆峰,等. 喷丸对钛合金TC4磨削加工表面完整性的影响[J]. 材料热处理学报, 2012, 33(增刊1):107-109. WANG X, LI Z X, LU F, et al. Effect of shot peening on grinding surface integrity of TC4 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(Suppl 1):107-109.
[10] 王仁智. 残余应力测定的基本知识——第五讲金属材料与零件的表面完整性与疲劳断裂抗力间的关系[J]. 理化检验-物理分册, 2007, 43(10):535-539. WANG R Z. Basic knowledge of residual stress determination——lecture no. 5 review on the relationship between surface integrity and fatigue fracture resistance of metallic materials and components[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2007, 43(10):535-539.
[11] SHERAFATNIA K, FARRAHI G H, MAHMOUDI A H. Effect of initial surface treatment on shot peening residual stress field:analytical approach with experimental verification[J]. International Journal of Mechanical Sciences, 2018, 137:171-181.
[12] LIANG T, ZHANG D, YAO C, et al. Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy[J]. Journal of Manufacturing Processes, 2017, 26:155-165..
[13] 罗学昆,艾莹珺,王欣,等. 喷丸强化对TB6钛合金疲劳性能和表面完整性的影响[J]. 钛工业进展, 2017, 34(4):38-43. LUO X K, AI Y J, WANG X, et al. Effect of shot peening on fatigue property and surface integrity of TB6 titanium alloy[J]. Titanium Industry Progress, 2017, 34(4):38-43.
[14] LI J K, MEI Y, DUO W, et al. An analysis of stress concentrations caused by shot peening and its application in predicting fatigue strength[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 15(12):1271-1279.
[1] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[2] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[3] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[4] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[5] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[6] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[7] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[8] 刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
[9] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[10] 刘石双, 仇平, 蔡建明, 李娟, 黄旭, 于辉, 刘利刚. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47(7): 112-120.
[11] 郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
[12] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[13] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[14] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[15] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn