Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 100-106    DOI: 10.11868/j.issn.1001-4381.2019.000146
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
黏度可控化制备BPDA-PDA型聚酰亚胺及表征
倪洪江1,2, 邢宇1,2, 戴霄翔1,2, 李军1,2, 张代军1,2, 杨士勇3, 陈祥宝1,2
1. 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095;
2. 先进复合材料国防科技重点实验室, 北京 100095;
3. 中国科学院化学研究所 高技术材料实验室, 北京 100190
Viscosity-controllable preparation and characterization of BPDA-PDA polyimide
NI Hong-jiang1,2, XING Yu1,2, DAI Xiao-xiang1,2, LI Jun1,2, ZHANG Dai-jun1,2, YANG Shi-yong3, CHEN Xiang-bao1,2
1. Research Center of Soft Materials Technology, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Key Laboratory of Advanced Composites, Beijing 100095, China;
3. Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(1891 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过二酐水解程度控制改性聚酰亚胺前驱体的方法,对3,3',4,4'-联苯四酸二酐(BPDA)-对苯二胺(PDA)型聚酰亚胺前驱体溶液的黏度进行调控。前驱体的化学结构通过红外光谱(FT-IR)和核磁氢谱(1H-NMR)进行表征,并考察二酐水解对前驱体溶液黏度、亚胺化过程和材料性能的影响。结果表明:水解BPDA与PDA反应生成的前驱体,同时含有酰胺酸和羧酸铵盐官能团结构;羧酸铵盐的引入可降低前驱体溶液黏度,实现黏度在10~105cP范围内的有效调控;羧酸铵盐的存在未影响前驱体的完全亚胺化,使得材料力学性能得到保持;同时,该黏度调控方法具有降低BPDA-PDA型聚酰亚胺薄膜热膨胀系数的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪洪江
邢宇
戴霄翔
李军
张代军
杨士勇
陈祥宝
关键词 BPDA-PDA型聚酰亚胺前驱体黏度调控力学性能热膨胀系数(CTE)    
Abstract:With precursor modification by regulating dianhydride hydrolysis degree, the viscosity of polyimide precursor solution, derived from 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA) and para-phenylenediamine (PDA), was facilely manipulated. The chemical structure of the precursor was characterized by infrared (IR) spectrometry and proton nuclear magnetic resonance (1H-NMR) spectrometry. The effects of dianhydride hydrolysis on the viscosity, imidization process and properties were investigated. The results show that the precursor can be formed from hydrolytic BPDA and PDA, with amide acid and carboxylic ammonium salt groups in the molecular structure. The viscosity of the precursor can be reduced by the introduction of carboxylic ammonium salt group, achieving the effective regulation of viscosity in the 10-105cP range. Importantly, the existence of carboxylic ammonium salt shows no influence on the complete imidization of the precursor, which guarantees the maintenance of mechanical property. Interestingly, the coefficient of thermal expansion (CTE) of this BPDA-PDA polyimide films can be reduced by this viscosity manipulation method.
Key wordsBPDA-PDA polyimide    precursor    viscosity manipulation    mechanical property    coefficient of thermal expansion (CTE)
收稿日期: 2019-02-21      出版日期: 2019-11-21
中图分类号:  TN249  
基金资助: 
通讯作者: 倪洪江(1987-),男,工程师,博士,主要从事聚酰亚胺材料及树脂基复合材料的研究,联系地址:北京81信箱3分箱(100095),E-mail:nihongjiang@iccas.ac.cn     E-mail: nihongjiang@iccas.ac.cn
引用本文:   
倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 杨士勇, 陈祥宝. 黏度可控化制备BPDA-PDA型聚酰亚胺及表征[J]. 材料工程, 2019, 47(11): 100-106.
NI Hong-jiang, XING Yu, DAI Xiao-xiang, LI Jun, ZHANG Dai-jun, YANG Shi-yong, CHEN Xiang-bao. Viscosity-controllable preparation and characterization of BPDA-PDA polyimide. Journal of Materials Engineering, 2019, 47(11): 100-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000146      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/100
[1] 丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料[M]. 北京:科学出版社, 2006. DING M X. Polyimide:relationship between chemistry and structure and properties, and materials[M]. Beijing:Science Press, 2006.
[2] LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials:syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7):907-974.
[3] 沈超,陈祥宝. PMR-15及其复合材料的发展与应用[J]. 材料工程, 1994(11):6-9. SHEN C, CHEN X B. Application and development of PMR-15 and its composites[J]. Journal of Materials Engineering, 1994(11):6-9.
[4] HERGENROTHER P M. The use, design, synthesis, and properties of high performance/high temperature polymers:an overview[J]. High Performance Polymers, 2003, 15(1):3-45.
[5] 刘金刚,倪洪江,房光强,等. 特种聚酰亚胺薄膜制备技术新进展[J]. 绝缘材料, 2015, 48(1):1-5. LIU J G, NI H J, FANG G Q, et al. New progress of manufacturing technology for functional polyimide films[J]. Insulating Materials, 2015, 48(1):1-5.
[6] YAMAGUCHI H. Development of non-adhesive type flexible copper clad laminate "UPISEL (R)-N"[J]. Journal of Photopolymer Science and Technology, 2003, 16(2):233-236.
[7] NI H J, ZHANG X M, LIU J G, et al. Intrinsically heat-sealable polyimide films derived from 2,3,3',4'-oxydiphthalic anhydride and aromatic diamines with various ether linkages[J]. High Performance Polymers, 2017, 29(3):362-371.
[8] REE M, KIM K, WOO S H, et al. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities[J]. Journal of Applied Physics, 1997, 81(2):698-708.
[9] MATSUMURA A, TERUI Y, ANDO S, et al. Effects of structural isomerism and precursor structures on thermo-optic coefficients of BPDA/PDA polyimide films[J]. Journal of Photopolymer Science and Technology, 2007, 20(2):167-174.
[10] CHEN J S, YANG S Y, TAO Z Q, et al. Processing and properties of carbon fiber-reinforced PMR type polyimide composites[J]. High Performance Polymers, 2006, 18(3):377-396.
[11] WILSON D. PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20(5):405-416.
[12] FROST L W, KESSE I. Spontaneous degradation of aromatic polypromellitamic acids[J]. Journal of Applied Polymer Science, 1964, 8(3):1039-1051.
[13] DINE-HART R A, WRIGHT W W. Preparation and fabrication of aromatic polyimides[J]. Journal of Applied Polymer Science, 1967, 11(5):609-627.
[14] BOWER G M, FROST L W. Aromatic polyimides[J]. Journal of Polymer Science:Part A, 1963, 1(10):3135-3150.
[15] IMAI Y. Rapid synthesis of polyimides from nylon-salt-type monomers[M]//Kricheldorf H R. Progress in Polyimide Chemistry Ⅰ. Berlin:Springer, 1999:1-22.
[16] ITOYA K, KUMAGAI Y, KAKIMOTO M A, et al. High-pressure synthesis of aliphatic polyimides via salt monomers composed of aliphatic diamines and oxydiphthalic acid[J]. Macromolecules, 1994, 27(15):4101-4105.
[17] BRUNEL R, MARESTIN C, MARTIN V, et al. Water-borne polyimides via microwave-assisted polymerization[J]. High Performance Polymers, 2010, 22(1):82-94.
[18] TONG Y J, LI Y S, DING M X. Synthesis of aromatic polyimides in DMAc containing large amount of water and the properties thereof[J]. Polymer Bulletin, 1999, 42(1):47-53.
[19] KRISHNAN P S G, VORA R H, CHUNG T S, et al. Studies on ionic salt of polyamic acid and related compounds[J]. Journal of Polymer Research, 2004, 11(4):299-308.
[20] GAO X, FU H, QIAO R, et al. Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halides with amidine hydrochlorides[J]. The Journal of Organic Chemistry, 2008, 73(17):6864-6866.
[21] SAEED M B, ZHAN M S. Effects of monomer structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimide films[J]. European Polymer Journal, 2006, 42(8):1844-1854.
[22] NUMATA S I, OOHARA S, FUJISAKI K, et al. Thermal expansion behavior of various aromatic polyimides[J]. Journal of Applied Polymer Science, 1986, 31(1):101-110.
[23] ISHII J, TAKATA A, OAMI Y, et al. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films[J]. European Polymer Journal, 2010, 46(4):681-693.
[24] SENSUI N, ISHII J, TAKATA A, et al. Ultra-low CTE and improved toughness of PMDA/PDA polyimide-based molecular composites containing asymmetric BPDA-type polyimides[J]. High Performance Polymers, 2009, 21(6):709-728.
[25] MIWA T, OKABE Y, ISHIDA M. Effects of precursor structure and imidization process on thermal expansion coefficient of polyimide (BPDA/PDA)[J]. Polymer, 1997, 38(19):4945-4949.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn