Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 32-38    DOI: 10.11868/j.issn.1001-4381.2019.000151
  光催化专栏 本期目录 | 过刊浏览 | 高级检索 |
氮、银共掺杂TiO2可见光催化剂的制备及表征
柏源1,2, 张超智2, 孙红旗3, 陈斌4
1. 国电科学技术研究院有限公司, 南京 210023;
2. 南京信息工程大学 海洋科学学院, 南京 210044;
3. 埃迪斯科文大学 工程学院, 澳大利亚 珀斯 WA6027;
4. 江阴利创石墨烯光催化技术有限公司, 江苏 江阴 214443
Preparation and characterization of nitrogen and silver co-doped TiO2 nanocatalyst for visible light photocatalysis
BAI Yuan1,2, ZHANG Chao-zhi2, SUN Hong-qi3, CHEN Bin4
1. GuoDian Science and Technology Research Institute, Nanjing 210023, China;
2. School of Marine Sciences, Nanjing University of Information Science&Technology, Nanjing 210044, China;
3. School of Engineering, Edith Cowan University, Perth WA6027, Australia;
4. Jiangyin Lichuang Graphene Photocatalytic Technology Co., Ltd., Jiangyin 214443, Jiangsu, China
全文: PDF(2695 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用改进的溶胶-凝胶法制备N,Ag共掺杂TiO2光催化剂。利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-Vis)等表征手段对光催化剂物化性质进行表征。结果表明:N元素以取代的方式掺入到TiO2晶格之间,但不能抑制催化剂晶粒长大,而Ag元素的加入抑制晶粒生长;N,Ag共掺杂TiO2禁带宽度降幅最大。苯酚光催化降解实验表明,改进的溶胶-凝胶法制备的催化剂光催化效率明显高于沉淀法制备的催化剂,在紫外-可见光照射120 min后,N,Ag共掺杂TiO2的光催化效率达到51.3%;在可见光照射360 min后,光催化效率能够达到51.7%,可见光响应并不以牺牲其紫外活性为代价。其原因是N,Ag共掺杂不仅可以降低TiO2的带隙,将其吸收阈值调控至可见光区域,而且增加了催化剂的氧空位浓度,显著增强了催化剂对可见光的响应,从而提高可见光催化降解效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柏源
张超智
孙红旗
陈斌
关键词 二氧化钛光催化氮、银共掺杂可见光响应制备    
Abstract:Nitrogen and silver co-doped TiO2 photocatalytic material was prepared by improved sol-gel method. Physiochemical properties were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and ultraviolet-visible diffuse spectroscopy (UV-Vis). The results show that nitrogen doping is substituted into TiO2 lattice, but catalyst grain growth cannot be inhibited. Due to the addition of Ag element, catalyst grain growth is inhibited. Greatest band-gap narrowing occurs due to nitrogen and silver co-doping. The experiments of photogradation of phenol show that photocatalytic efficiency of catalysts prepared by the improved sol-gel method is significantly higher than that of catalysts prepared by the impregnation method. Under UV-visible irradiation for 120 min, the efficiency of nitrogen and silver co-doped TiO2 is 51.3%, and the efficiency is 51.7% under visible light irradiation for 360 min. Fortunately, visible photocatalytic activity is not realised at the cost of UV activity. Nitrogen and silver co-doping not only reduces band gap of TiO2, but also adjusts its absorption threshold to visible region. Simultaneously, oxygen vacancy concentration of catalysts increases and the response of catalysts to visible light significantly enhances, hence photocatalytic activity of nitrogen and silver co-doped TiO2 enhances.
Key wordsTiO2    photocatalysis    nitrogen and silver co-doping    visible light response    preparation
收稿日期: 2019-02-23      出版日期: 2020-11-20
中图分类号:  O643  
基金资助: 
通讯作者: 张超智(1970-),男,教授,博士生导师,主要研究方向为太阳能电池材料、含氟有机/聚合物合成新方法新工艺以及石墨烯新能源材料,联系地址:江苏省南京市宁六路219号南京信息工程大学学科楼1#(210044),E-mail:zhangchaozhi@nuist.edu.cn     E-mail: zhangchaozhi@nuist.edu.cn
引用本文:   
柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
BAI Yuan, ZHANG Chao-zhi, SUN Hong-qi, CHEN Bin. Preparation and characterization of nitrogen and silver co-doped TiO2 nanocatalyst for visible light photocatalysis. Journal of Materials Engineering, 2020, 48(11): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000151      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/32
[1] WU M C,WU P Y,LIN T H,et al. Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment[J]. Applied Surface Science,2018,430:390-398.
[2] WU L,YU J C,FU X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under vi-sible light irradiation[J]. Journal of Molecular Catalysis:A,2006,244(1/2):25-32.
[3] ABD-RABBOH H S M,BENAISSA M,AHMED M A,et al. Fa-cile synthesis of spherical Au/TiO2 nanoparticles by sol-gel method using Tween 80 for photocatalytic decolourization of malachite green dye[J]. Materials Research Express,2019,6(2):025028.
[4] ASAHI R,MORIKAWA T,OHWAKI T, et al.Visible-light photo-catalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
[5] DONG F,SEN G,HAI Q,et al. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach[J]. The Journal of Physical Chemistry C,2011,115(27):13285-13292.
[6] BAKAR S A,RIBEIRO B. A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts:a case study of possible sulfur doping through chemical protocol[J]. Journal of Molecular Catalysis:A,2016,421:1-15.
[7] HO W K,YU J C,LEE S C. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity[J]. Chemical Communications,2006,111(10):1115-1117.
[8] BUZBY S,BARAKAT M A,LIN H,et al. Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition[J]. Journal of Vacuum Science & Technology B,2006,24(3):1210-1214.
[9] YANG G D,JIANG Z,SHI H H,et al. Preparation of highly visible-light active N-doped TiO2 photocatalyst[J]. Journal of Materials Chemistry,2010,20(25):5301-5309.
[10] ZHU M S,ZHAI C Y,QIU L Q,et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation[J]. ACS Sustai-nable Chemistry & Engineering,2015,3(12):3123-3129.
[11] SUN H Q,BAI Y,LIU H J,et al. Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation[J]. Journal of Photochemistry and Photobiology:A,2009,201(1):15-22.
[12] RYOJI A,MORIKAWA T,IRIE H,et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst:designs, developments,and prospects[J].Chemical Reviews,2014,114(19):9824-9852.
[13] ZHANG W,JIA B P,WANG Q Z,et al. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment:a review[J]. Journal of Nanoparticle Research,2015,17:221-233.
[14] WU Y Y,DONG Y M,XIA X F,et al. Facile synthesis of N-F codoped and molecularly imprinted TiO2 for enhancing photoca-talytic degradation of target contaminants[J]. Applied Surface Science,2016,364:829-836.
[15] SAKATAIN Y,ANDO H,OKUSAKO K,et al. Metal ion and N co-doped TiO2 as a visible-light photocatalyst[J]. Journal of Materials Research,2004,19(7):2100-2108.
[16] YE C,TIAN B Z,ZHANG J L. Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping[J]. Applied Catalysis B:Environmental,2011,101(3/4):376-381.
[17] 柏源,孙红旗,刘会景,等. 浓度梯度分布的镍和氮共掺杂TiO2光催化剂的制备和表征[J]. 高等学校化学学报,2008,29(11):2232-2238. BAI Y,SUN H Q,LIU H J,et al. Preparation and characterization of TiO2 photocatalyst co-doped by nitrogen and nickel with concentration gradient distribution[J]. Chemical Journal of Chinese Universities,2008,29(11):2232-2238.
[18] SU Y L,XIAO Y T,LI Y,et al. Preparation, photocatalytic performance and electronic structures of visible-light-driven Fe-N-codoped TiO2 nanoparticles[J]. Materials Chemistry and Phy-sics,2011,126(3):761-768.
[19] 邵享文,王槟强,艾翠玲,等. 银氮共掺杂二氧化钛的制备及其抗菌性能[J]. 环境工程学报,2016,10(7):3415-3420. SHAO X W,WANG B Q,AI C L,et al. Preparation and antibacterial active of Ag-N-codoped TiO2 photocatalyst[J]. Chinese Journal of Environmental Engineering,2016,10(7):3415-3420.
[20] CHEN Q L,ZHANG Y L,ZHANG D D,et al. Ag and N co-doped TiO2 nanostructured photocatalyst for printing and dyeing waste water[J]. Journal of Water Process Engineering,2017,16:14-20.
[21] 宗志芳,杨麟,张浩,等. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程,2018,46(5):145-150. ZONG Z F,YANG L,ZHANG H,et al. Preparation of environmental coordination Ce-La/TiO2 composites and photocatalytic-moisture-heat properties[J]. Journal of Materials Engineering,2018,46(5):145-150.
[22] GIAMPICCOLO A,TOBALDI D M,LEONARDI S G,et al. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2[J]. Applied Catalysis B:Environmental,2019,243:183-194.
[23] LIANG Z Q,BAI X J,HAO P,et al. Full solar spectrum photocatalytic oxygen evolution by carbon-coated TiO2 hierarchical nanotubes[J]. Applied Catalysis:B,2019,243:711-720.
[24] XIE H F,DING F,MU H C. Effects of Au nanoparticles and ZnO morphology on the photocatalytic performance of Au doped ZnO/TiO2 films[J]. Nanotechnology,2019,30(8):085708.
[25] LEYVA E,MOCTEZUMA E,LOPEZ M,et al. Photocatalytic degradation of β-blockers in TiO2 with metoprolol as model compound:intermediates and total reaction mechanism[J]. Catalysis Today,2019,323:14-25.
[26] 张祎旸,谷笛,王宝辉. 新型TiO2 NTs制备和结构控制及其硝基苯光催化性能[J]. 稀有金属材料与工程,2018,47(11):3542-3547. ZHANG Y Y,GU D,WANG B H. Preparation and structural control of novel hierarchical TiO2 nanotube arrays and photoca-talytic performance of nitrobenzene[J]. Rare Metal Materials and Engineering,2018,47(11):3542-3547.
[27] DUAN J H,ZHAO H,ZHANG Z S,et al. The Z-scheme he-terojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light[J]. Ceramics International,2018,44(18):22748-22759.
[28] JIN Q J,SHEN Y S,ZHU S M,et al. Effect of praseodymium additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. Journal of Rare Earths,2016,34(11):1111-1120.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[3] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[4] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[5] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[6] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[7] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[8] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[9] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[10] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[11] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[12] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[13] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[14] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[15] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn