Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (11): 140-146    DOI: 10.11868/j.issn.1001-4381.2019.000173
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Cu-Cr-Ti-Si合金加工软化的机理
袁继慧1, 陈辉明2, 谢伟滨2, 魏海根2, 汪航2, 杨斌1,2,*()
1 江西理工大学 材料科学与工程学院, 江西 赣州 341000
2 江西理工大学 工程研究院, 江西 赣州 341000
Work-softening mechanism of Cu-Cr-Ti-Si alloy
Ji-hui YUAN1, Hui-ming CHEN2, Wei-bin XIE2, Hai-gen WEI2, Hang WANG2, Bin YANG1,2,*()
1 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 Institute of Engineering Research, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
全文: PDF(6708 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

通过大气熔炼制备Cu-Cr-Ti和Cu-Cr-Ti-Si合金铸锭,进行热轧—固溶—时效—冷轧工艺制备带材,研究合金经不同变形量冷轧后的组织和性能。采用金相显微镜(OM)、配备有电子背散射衍射系统(EBSD)的扫描电子显微镜(SEM)、X射线衍射仪(XRD)以及透射电子显微镜(TEM)等检测手段对冷轧后的合金的组织结构与性能进行分析。结果表明,添加微量Si元素的Cu-Cr-Ti-Si合金在变形量ε≥80%时,硬度不升反降,而Cu-Cr-Ti合金没有发现此现象。随着变形量增大,Cu-Cr-Ti-Si合金小角度晶界比例降低,位错胞增多,位错密度略有下降,但无再结晶晶粒,说明回复导致加工软化。通过分析冷轧前组织发现,Si元素能细化合金晶粒,导致变形前Cu-Cr-Ti-Si合金晶粒较Cu-Cr-Ti更加细小,单位面积内晶界数量多,从而为合金变形中发生回复提供更多的形核位置储能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁继慧
陈辉明
谢伟滨
魏海根
汪航
杨斌
关键词 Cu-Cr-TiCu-Cr-Ti-Si加工软化回复位错密度晶粒细化    
Abstract

The Cu-Cr-Ti and Cu-Cr-Ti-Si alloy ingots were melted in the atmosphere, and then treated with hot rolling-solid solution-aging-cold rolling process. Microstructure and properties of alloy after cold rolling with different deformation were studied. The microstructure of the alloy after cold rolling was analyzed by using OM, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy. The results show that when the deformation ε is greater than 80%, the hardness of Cu-Cr-Ti-Si alloy is decreased. Such phenomenon does not occur in Cu-Cr-Ti alloy. With the increase of deformation, the proportion of low angle grain boundaries in Cu-Cr-Ti-Si alloy is decreased, and the increase of dislocation cells and sub-grains leads to slight decrease of dislocation density. Since no re-crystallization was observed, recovery is responsible for work softening. By analyzing the microstructure before cold rolling, it is found that Si can refine the alloy grains, resulting in smaller grains of Cu-Cr-Ti-Si alloy than Cu-Cr-Ti before deformation. More grain boundaries per unit area provide more energy storage at nucleation sites for recovery during deformation of the alloy.

Key wordsCu-Cr-Ti    Cu-Cr-Ti-Si    work-softening    recovery    dislocation density    grain refinement
收稿日期: 2019-03-01      出版日期: 2020-11-20
中图分类号:  TG146.1  
基金资助:国家科技部重点研发计划(2016YFB0301400)
通讯作者: 杨斌     E-mail: yangbin65@126.com
作者简介: 杨斌(1962-), 男, 教授, 博士生导师, 主要从事有色金属制备与加工等方面的研究, 联系地址:江西省赣州市客家大道156号江西理工大学材料冶金化学学部(341000), E-mail:yangbin65@126.com
引用本文:   
袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
Ji-hui YUAN, Hui-ming CHEN, Wei-bin XIE, Hai-gen WEI, Hang WANG, Bin YANG. Work-softening mechanism of Cu-Cr-Ti-Si alloy. Journal of Materials Engineering, 2020, 48(11): 140-146.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000173      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/140
Alloy Cr Ti Si Cu
Cu-0.35Cr-0.055Ti 0.35 0.055 Bal
Cu-0.32Cr-0.059Ti-0.017Si 0.32 0.059 0.017 Bal
Table 1  合金实际化学成分(质量分数/%)
Fig.1  Cu-0.35Cr-0.055Ti和Cu-0.32Cr-0.059Ti-0.017Si合金经不同变形量冷轧后的显微硬度
Fig.2  合金冷轧前显微组织
(a)Cu-0.35Cr-0.055Ti;(b)Cu-0.32Cr-0.059Ti-0.017Si
Fig.3  Cu-0.35Cr-0.055Ti(1)和Cu-0.32Cr-0.059Ti-0.017Si(2)合金不同变形量冷轧后金相组织
(a)30%;(b)60%;(c)80%;(d)90%
Fig.4  Cu-0.35Cr-0.055Ti(1)和Cu-0.32Cr-0.059Ti-0.017Si(2)合金不同变形量冷轧合金晶界图
(a)30%;(b)60%;(c)80%;(d)90%
Fig.5  合金不同变形量冷轧后晶界取向差分布图
(a)Cu-0.35Cr-0.055Ti;(b)Cu-0.32Cr-0.059Ti-0.017Si
Fig.6  Cu-0.35Cr-0.055Ti合金(1)和Cu-0.32Cr-0.059Ti-0.017Si(2)合金经不同变形量冷轧后TEM图
(a)0%;(b)60%;(c)80%;(d)90%
Fig.7  合金不同变形量冷轧后XRD图
(a)Cu-0.35Cr-0.055Ti;(b)Cu-0.32Cr-0.059Ti-0.017Si
ε/% Dislocation density/1014m-2
Cu-0.35Cr-0.055Ti Cu-0.32Cr-0.059Ti-0.017Si
30 4.8383 5.1379
60 4.8602 6.2547
80 4.8917 5.8442
90 5.0680 4.8631
Table 2  合金经不同变形量冷轧后位错密度
1 张瑞丰, 沈宁福. 快速凝固高强高导Cu-Cr合金的性能[J]. 中国有色金属学报, 2001, 11 (增刊1): 105- 109.
1 ZHANG R F , SHEN N F . Properties of rapidly solidified Cu-Cr alloys with high strength and high conductivity[J]. The Chinese Journal of Nonferrous Metals, 2001, 11 (Suppl 1): 105- 109.
2 PRASAD V V S , SANKAR M , REDDY Y S , et al. Effect of process parameters on in-situ reduction of chromium oxide during electro slag crucible melting of Cu-Cr alloy[J]. Transactions of the Indian Institute of Metals, 2006, 46 (5): 776- 778.
3 HAMALAINEN M , JAASKELAINEN K , LUOMA R , et al. A thermodynamic analysis of the binary alloy systems Cu-Cr, Cu-Nb and Cu-V[J]. Calphad-computer Coupling of Phase Diagrams & Thermo Chemistry, 1990, 14 (2): 125- 137.
4 赵冬梅, 董企铭, 刘平, 等. 高强高导铜合金合金化机理[J]. 中国有色金属学报, 2001, 11 (增刊2): 21- 24.
4 ZHAO D M , DONG Q M , LIU P , et al. Mechanism of alloying of copper alloy with high strength and high electrical conductivity[J]. The Chinese Journal of Nonferrous Metals, 2001, 11 (Suppl 2): 21- 24.
5 LI F Z , LIU Z J , JIN Q , et al. Investigation on work softening behavior of aluminum and its alloys with iron[J]. Journal of Materials Engineering & Performance, 1997, 6 (2): 26- 28.
6 李凤珍, 刘兆晶, 金铨, 等. 铝及铝铁合金的加工软化机理[J]. 中国有色金属学报, 1997, 7 (1): 98- 102.
6 LI F Z , LIU Z J , JIN Q , et al. Work-softening mechanism of pure aluminums and Al-Fe alloys[J]. The Chinese Journal of Nonferrous Metals, 1997, 7 (1): 98- 102.
7 TERAI S , BABA Y . Effect of the second phase on the "work softening" phenomenon of aluminium alloys[J]. Trans Japan Inst Met, 1962, 3 (4): 237- 243.
doi: 10.2320/matertrans1960.3.237
8 MAZILKIN A A , STRAUMAL B B , RABKIN E , et al. Softening of nanostructured Al-Zn and Al-Mg alloys after severe plastic deformation[J]. Acta Materialia, 2006, 54 (15): 3933- 3939.
doi: 10.1016/j.actamat.2006.04.025
9 LIU C Y , MA M Z , LIU R P , et al. Evaluation of microstructure and mechanical properties of Al-Zn alloy during rolling[J]. Materials Science and Engineering:A, 2016, 654, 436- 441.
doi: 10.1016/j.msea.2015.12.073
10 JUN J H , SEONG K D , KIM J M , et al. Strain-induced microstructural evolution and work softening behavior of Zn-5%Al alloy[J]. Journal of Alloys and Compounds, 2007, 434/435, 311- 314.
doi: 10.1016/j.jallcom.2006.08.189
11 YANG C F , PAN J H , LEE T H . Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys[J]. Journal of Alloys and Compounds, 2009, 468 (1): 230- 236.
12 FU H D , ZHANG Z H , YANG Q , et al. Strain-softening behavior of an Fe-6.5wt%Si alloy during warm deformation and its applications[J]. Materials Science and Engineering:A, 2011, 528 (3): 1391- 1395.
doi: 10.1016/j.msea.2010.10.093
13 WANG X L , LI H Z , ZHANG W N , et al. The work softening by deformation-induced disordering and cold rolling of 6.5wt% Si steel thin sheets[J]. Metallurgical and Materials Transactions A, 2016, 47 (9): 1- 10.
14 LI H , LIANG Y F , YANG W , et al. Disordering induced work softening of Fe-6.5wt%Si alloy during warm deformation[J]. Materials Science and Engineering:A, 2015, 628, 262- 268.
doi: 10.1016/j.msea.2015.01.058
15 GUO M X , WANG M P , CAO L F , et al. Work softening characterization of alumina dispersion strengthened copper alloys[J]. Materials Characterization, 2007, 58 (10): 928- 935.
doi: 10.1016/j.matchar.2006.09.005
16 GUO M X , SHEN K , WANG M P . Strain softening behavior in a particle-containing copper alloy[J]. Materials Science and Engineering:A, 2010, 527 (10): 2478- 2485.
17 WILLIAMSON G K , HALL W H . X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953, 1 (1): 22- 31.
doi: 10.1016/0001-6160(53)90006-6
18 CAHN J W . The impurity-drag effect in grain boundary motion[J]. Acta Metallurgica, 1962, 10 (9): 789- 798.
doi: 10.1016/0001-6160(62)90092-5
19 BAMETT M R , BEER A G , ATWELL D , et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn[J]. Scripta Materialia, 2004, 51 (1): 19- 24.
doi: 10.1016/j.scriptamat.2004.03.023
20 BAMETT M R , KESHAVARZ Z , BEER A G , et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia, 2004, 52 (17): 5093- 5103.
doi: 10.1016/j.actamat.2004.07.015
21 魏洁, 唐广波, 刘正东. 碳锰钢热变形行为及动态再结晶模型[J]. 钢铁研究学报, 2008, 20 (3): 31- 35.
21 WEI J , TANG G B , LIU Z D . Hot deformation and dynamic recrystallization models of C-Mn steel[J]. Journal of Iron and Steel Research, 2008, 20 (3): 31- 35.
22 秦清风, 谭迎新, 杨勇彪, 等. 晶粒尺寸对7A04铝合金热变形行为的影响研究[J]. 热加工工艺, 2016, 45 (11): 59- 63.
22 QIN Q F , TAN Y X , YANG Y B , et al. Influence of grain sizes on hot deformation behavior of 7A04 aluminum alloy[J]. Hot Working Technology, 2016, 45 (11): 59- 63.
23 董勇, 董明, 汪哲能, 等. 初始晶粒尺寸对大应变轧制AZ31镁合金板材显微组织和力学性能的影响[J]. 机械工程材料, 2014, 38 (7): 33- 37.
23 DONG Y , DONG M , WANG Z N , et al. Effect of initial grain sizes on microstructure and mechanical properties of AZ31 magnesium alloy sheets fabricated by large strain rolling[J]. Materials for Mechanical Engineering, 2014, 38 (7): 33- 37.
24 李娜丽.初始组织及变形条件对AZ31镁合金热挤压组织和织构演变的影响研究[D].重庆: 重庆大学, 2013.
24 LI N L. Effects of initial microstructure and deformation conditions on microstructure and texture evolution of hot extruded AZ31 magnesium alloy[D].Chongqing: Chongqing University, 2013.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 张瑞, 孟亦圆, 陈军, 车枫, 林莉, 罗忠兵. 工业纯铁退火过程中的位错密度和磁性能[J]. 材料工程, 2022, 50(6): 157-163.
[4] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[5] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[6] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[7] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[8] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[9] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[10] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[11] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[12] 万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
[13] 王明华, 杜军. 微量Fe对Mg-3%Al合金碳质孕育衰退的影响[J]. 材料工程, 2016, 44(5): 54-58.
[14] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[15] 唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn