Please wait a minute...
材料工程  2020, Vol. 48 Issue (5): 62-67    DOI: 10.11868/j.issn.1001-4381.2019.000189
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
靳宇1, 李家峰1, 何南2, 文陈1, 崔庆新1, 白晶莹1
1. 中国空间技术研究院 北京卫星制造厂有限公司, 北京 100194;
2. 中国空间技术研究院 研发与市场部, 北京 100194
Synthesis and catalytic performance of nanoporous Pd-Cu/Pd-Ag catalyzer
JIN Yu1, LI Jia-feng1, HE Nan2, WEN Chen1, CUI Qing-xin1, BAI Jing-ying1
1. Beijing Spacecrafts Co., Ltd., China Academy of space Technology, Beijing 100194, China;
2. Research Development and Marketing Department, China Academy of Space Technology, Beijing 100194, China
全文: PDF(3997 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对直接甲醇燃料电池(direct methanol fuel cell,DMFE)对高效阳极催化剂的需求,设计研发Ca-Mg-Pd-MM=Cu,Ag)非晶合金前躯体体系,并采用去合金化制备系带-孔道双连续结构的纳米多孔Pd-Cu/Pd-Ag合金。通过设计前驱体合金比例可调节多孔结构的元素比例和尺寸,Pd元素可与Cu,Ag元素形成连续固溶体,在去合金化过程中可以降低Cu,Ag元素的扩散,进而细化纳米多孔的系带尺寸(由100 nm减小到10 nm)。相较于纳米多孔Pd,纳米多孔Pd-Cu/Pd-Ag合金表现出更优异的甲醇催化活性(催化电流强度:45 mA/mg)和抗毒化能力(Jf/Jb值为1.56),还具有低成本的优点,在直接甲醇燃料电池阳极催化剂方面有着良好的应用前景。
E-mail Alert
关键词 直接甲醇燃料电池纳米多孔合金去合金化Pd-Cu合金Pd-Ag合金    
Abstract:In view of the imperious demand for efficient anode catalyst in direct methanol fuel cell(DMFE), Ca-Mg-Pd-M(M=Cu,Ag) metallic glasses were designed and synthesized as precursors to prepare nanoporous Pd-Cu/Pd-Ag alloys with ligament-pore bicontinuous structure through dealloying in this paper. The proportion of elements as well as the ligament size of nanoporous metals can be adjusted by changing the composition of presurors. Pd elements can form continuous solid solution with Cu and Ag in a wide range, which can reduce the diffusion rate of Cu and Ag elements in solution, and refine the ligament size of nanoporous metals dramatically(from 100 nm to 10 nm). Moreover, catalytic performance of nanoporous Pd-Cu/Pd-Ag alloys in methanol electro-oxidation was investigated. Compared to nanoporous Pd, nanoporous Pd-Cu/Pd-Ag alloys exhibit more excellent catalytic activity and anti-poisoning effect. The electric current density of nanoporous Pd-Cu alloy can reach 45 mA/mg, and the ratio of Jf/Jb is 1.56. As a result, the nanoporous Pd-Cu/Pd-Ag alloys with lower cost has favorable application prospect in DMFE.
Key wordsdirect methanol fuel cell(DMFE)    nanoporous alloy    dealloying    Pd-Cu alloy    Pd-Ag alloy
收稿日期: 2019-03-04      出版日期: 2020-05-28
中图分类号:  TG146.3  
通讯作者: 靳宇(1987-),女,工程师,博士,主要从事卫星表面热控涂层及空间燃料电池催化剂的研发,联系地址:北京市5142信箱435分箱(100094),     E-mail:
靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
JIN Yu, LI Jia-feng, HE Nan, WEN Chen, CUI Qing-xin, BAI Jing-ying. Synthesis and catalytic performance of nanoporous Pd-Cu/Pd-Ag catalyzer. Journal of Materials Engineering, 2020, 48(5): 62-67.
链接本文:      或
[1] LARMINIE J, DICKS A, McDONALD M S. Fuel cell systems explained[M]. Wiley:New York, 2003.
[2] TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428):687-689.
[3] ANDUJAR J, SEGURA F. Fuel cells:history and updating. a walk along two centuries[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9):2309-2322.
[4] 俞红梅,衣宝廉. 车用燃料电池现状与电催化[J]. 中国科学:化学, 2012, 42(4):480-494. YU H M, YI B L. Current status of vehicle fuel cells and electrocatalysis[J]. Scientia Sinica:Chemistry, 2012, 42(4):480-494.
[5] XU C W, SU Y Z, TAN L L, et al. Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells[J]. Electrochimica Acta, 2009, 54:6322-6326.
[6] DUAN H M, XU C X. Nanoporous PtPd Alloy electrocatalysts with high activity and stability toward oxygen reduction reaction[J]. Electrochimica Acta, 2015, 152:417-424.
[7] HAN B H, XU C X. Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2014, 39(32):18247-18255.
[8] PRABHURAM J, ZHAO T, LIANG Z, et al. Pd and Pd-Cu alloy deposited nation membranes for reduction of methanol crossover in direct methanol fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(7):1390-1397.
[9] YAO S, TED H Y, BORIS V M, et al. DFT prediction of oxygen reduction reaction on palladium-copper alloy surfaces[J]. ACS Catalysts, 2014,4(4):1189-1197.
[10] JIN Y, ZHANG T. Correlation between dealloying conditions and coarsening behaviors of nanoporous silver produced by chemical dealloying of Ca-Ag metallic glass[J]. Journal of Alloys and Compounds, 2017, 695:1600-1609.
[11] ZHANG R W, WANG X, ZHANG Z C, et al. Structure analysis of precursor alloy and diffusion during dealloying of Ag-Al alloy[J]. RSC Advances, 2018, 8(17):9462-9470.
[12] XU C X, WANG L, MU X L, et al. Nanoporous PtRu alloys for electrocatalysis[J]. Langmuir, 2010, 26(10):7437-7443.
[13] PICKERING H W. Electrolytic dissolution of binary alloys containing a noble metal[J]. Journal of the Electrochemical Society, 1967, 114(7):698-706.
[14] NEWMAN R C, CORCORAN S G, ERLEBACHER J. Alloy corrosion[J]. MRS Bulletin, 1999,24(7):24-28.
[15] ZHANG Z H, WANG Y, QI Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying[J]. Journal of Physical Chemistry C, 2009, 113(29):12629-12636.
[16] AMIYA K, INOUE A. Formation, thermal stability and mechanical properties of Ca-based bulk glassy alloys[J]. Materials Transactions, 2002, 43(1):81-84.
[17] AMIYA K, INOUE A. Formation and thermal stability of Ca-Mg-Ag-Cu bulk glassy alloys[J]. Materials Transactions, 2002, 43(10):2578-2581.
[18] JIAO W, ZHAO D Q, DING D W, et al. Effect of free electron concentration on glass-forming ability of Ca-Mg-Cu system[J]. Journal of Non-Crystalline Solids, 2012, 358(3):711-714.
[19] ZHANG Q, WANG X G, QI Z, et al. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution[J]. Electrochimica Acta, 2009, 54(26):6190-6198.
[20] CHEN Y X, MIKI A, YE S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Joumal of the American Chemical Society, 2003, 125(13):3680-3681.
[1] 杨春巍, 胡信国, 张亮, 戴长松. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, 0(7): 79-82,87.
[2] 高会元, 李永丹, 林跃生. Pd-Cu合金复合膜的制备及表征[J]. 材料工程, 2006, 0(2): 41-45.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持