Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 112-120    DOI: 10.11868/j.issn.1001-4381.2019.000190
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能
蔺佳明, 赵桃林, 王育华
石家庄铁道大学 材料科学与工程学院, 石家庄 050043
Fabrication and electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 as cathode material for lithium-ion batteries
LIN Jia-ming, ZHAO Tao-lin, WANG Yu-hua
School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
全文: PDF(7518 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 富锂锰基材料因其具有较高的充放电比容量而备受关注。针对其首次库仑效率低、循环和倍率性能差的问题,将具有三维Li+通道的锂离子导体Li2ZrO3引入至富锂锰基正极材料Li[Li0.2Ni0.2Mn0.6]O2的表面对其进行包覆改性研究。通过XRD,TEM,SEM,EDS综合分析可知:Li2ZrO3成功包覆到样品表面。包覆层厚度为3 nm (包覆量1%,质量分数)时复合材料的电化学性能得到显著提升。0.1 C (1 C=200 mAh·g-1)倍率下首次放电比容量可达271.5 mAh·g-1,库仑效率为72.4%,降低了首次不可逆容量损失;0.5 C下循环100周次后放电比容量为191.5 mAh·g-1,容量保持率为89.5%,5 C倍率放电比容量为75 mAh·g-1,倍率性能提升。适当厚度的均匀Li2ZrO3包覆层可在样品表面形成核壳结构使样品更稳定,减少表面副反应,阻止生成较厚SEI膜,这得益于Li2ZrO3本身的高电导率、高电化学稳定性和较好的锂离子传导性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔺佳明
赵桃林
王育华
关键词 锂离子电池富锂锰基材料Li2ZrO3包覆改性    
Abstract:Lithium-rich manganese-based materials have attracted much attention because of their high charge-discharge capacity. In order to solve the problems of low coulombic efficiency, poor cycling performance and poor rate capability, lithium-ion conductor Li2ZrO3 with three-dimensional Li+ channel was employed to coat lithium-rich manganese-based cathode material Li[Li0.2Ni0.2Mn0.6]O2. According to the structure and morphological analysis, different amounts of Li2ZrO3 were successfully coated on the surface of the sample. When the thickness of the coating layer is 3 nm (1% coating amount, mass fraction), the electrochemical performance of the composite material is significantly improved. The first discharge specific capacity is 271.5 mAh·g-1 and the first coulombic efficiency is 72.4%. The first irreversible capacity loss is obviously reduced. The discharge specific capacity at 0.5 C is 191.5 mAh·g-1 and the capacity retention is 89.5%. The specific capacity at 5 C is 75 mAh·g-1 and the rate performance is improved. The results show that a uniform thickness of Li2ZrO3 coating layer can form a core-shell structure on the surface of the sample to make the sample more stable. It can reduce surface side reactions and prevent the formation of thicker SEI films. All of these results benefit from the high conductivity, high electrochemical stability and good lithium ion conductivity of Li2ZrO3 coating layer.
Key wordslithium-ion battery    lithium-rich manganese-based material    Li2ZrO3    coating modification
收稿日期: 2019-03-04      出版日期: 2020-03-18
中图分类号:  TM912.9  
通讯作者: 王育华(1972-),男,副教授,博士,研究方向为锂离子电池、燃料电池等新能源材料,联系地址:河北省石家庄市北二环东路17号石家庄铁道大学材料科学与工程学院(050043),E-mail:wangyuhua@stdu.edu.cn     E-mail: wangyuhua@stdu.edu.cn
引用本文:   
蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
LIN Jia-ming, ZHAO Tao-lin, WANG Yu-hua. Fabrication and electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 coated with Li2ZrO3 as cathode material for lithium-ion batteries. Journal of Materials Engineering, 2020, 48(3): 112-120.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000190      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/112
[1] CHIANG Y M. Building a better battery[J]. Science, 2010, 330(6010):1485-1486.
[2] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition,2012, 51:5798-5800.
[3] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science,2012, 5(7):7854-7863.
[4] KALLURI S, YOON M, JO M, et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Advanced Energy Materials,2016,7(1):1601507.
[5] SHAJU K M, BRUCE P G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling[J]. Chemistry Materials,2008, 20(17):5557-5562.
[6] DELMAS C, MACCARIO M, CROGUENNEC L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model[J]. Nature Materials,2008, 7(8):665-671.
[7] WU Y, CAO C, ZHU Y, et al. Cube-shaped hierarchical LiNi1/3Co1/3Mn1/3O2 with enhanced growth of nanocrystal planes as high-performance cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:15523-15528.
[8] XIE Y, SAUBANERE M, DOUBLET M L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries[J]. Energy & Environmental Science,2017, 10(1):266-274.
[9] MANTHIRAM A, KNIGHT J C, et al. Nickel-rich and lithium-rich layered oxide cathodes:progress and perspectives[J]. Advanced Energy Materials,2015,6(1):1501010.
[10] ZHENG J, MYEONG S, CHO W, et al. Li-and Mn-rich cathode materials:challenges to commercialization[J]. Advanced Energy Materials,2016,7(6):1601284.
[11] YAN J, LIU X, LI B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries[J]. RSC Advanced, 2014, 4(108):63268-63284.
[12] ARMSTRONG A R, HOLZAPFEL M, NOVAK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society,2006, 128(26):8694-8698.
[13] SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials,2015, 14(2):230-238.
[14] ZHANG J, ZHANG H, GAO R, et al. New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3[J]. Physical Chemistry Chemical Physics, 2016, 18(19):13322.
[15] SONG L, JIAO L, XIAO Z, et al. Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3[J]. Ionics, 2018(1):1-11.
[16] HU G, ZHANG M, WU L, et al. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathodes produced via nanoscale coating of Li+-conductive Li2SnO3[J]. Electrochimica Acta, 2016, 213:547-556.
[17] MO Y, HOU B, LI D, et al. Enhanced high-rate capability and high voltage cycleability of Li2TiO3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. RSC Advanced, 2016,6(91):88713-88718.
[18] KANG S H, THACKERAY M M. Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2(M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment[J]. Electrochemistry Communications,2009, 11(14):748-751.
[19] QIAO Q Q, ZHANG H Z, LI G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries[J]. Journal of Materials Chemistry:A,2013, 1(17):5262-5268.
[20] 苏银利,王丹,陈丽,等. ZrO2包覆富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2[J]. 化学工业与工程, 2015, 32(4):30-33. SU Y L, WANG D, CHEN L, et al. ZrO2 coated Li rich cathode material Li[Li0.2Ni0.2Mn0.6]O2[J].Chemical Industry and Engineering, 2015, 32(4):30-33.
[21] SUN Y K, LEE M J, YOON C S, et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9):1192-1196.
[22] 岳鹏. 锂离子电池用富锂锰基正极材料的研究进展[J]. 山东化工, 2016, 45(18):35-37. YUE P. Research progress of lithium rich manganese based cathode materials for lithium ion batteries[J]. Shandong Chemical Industry, 2016, 45(18):35-37.
[23] LIANG H, WANG Z, GUO H, et al. Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating[J]. Applied Surface Science, 2017, 423:1045-1053.
[24] ZHANG S, GU H, TIAN T, et al. Insight into the synergistic effect mechanism between the Li2MO3 phase and the LiMO2 phase (M=Ni, Co, and Mn) in Li- and Mn-rich layered oxide cathode materials[J]. Electrochimica Acta, 2018, 266:66-77.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[3] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[6] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[7] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[8] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[9] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[10] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[11] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[12] 袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
[13] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[14] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[15] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn