Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 130-136    DOI: 10.11868/j.issn.1001-4381.2019.000198
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
中间形变热处理对2A97铝锂合金组织和性能的影响
于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉
中国航发北京航空材料研究院 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Effect of intermediate thermomechanical treatment on microstructure and properties of 2A97 Al-Li alloy
YU Juan, LU Zheng, LU Yuan, XIONG Yan-cai, LI Guo-ai, FENG Zhao-hui, HAO Shi-jia
Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(19547 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 通过室温拉伸、晶间腐蚀、电子背散射衍射(EBSD)、透射电镜(TEM)等测试方法,对中间形变热处理过程中进行不同压缩变形量处理的2A97铝锂合金厚板短横向室温拉伸性能、晶间腐蚀性能和合金的宏微观组织进行了系统研究。结果表明,随压缩变形量的增加,合金再结晶程度提高,强度和伸长率先增加后降低。压缩变形量为20%时,再结晶晶粒细小,晶粒内包含均匀弥散分布的δ'相,晶界处的δ'相断续分布,合金的拉伸性能最好,伸长率明显提高;压缩变形量为25%时,合金的耐晶间腐蚀性能最好。合金的拉伸性能和腐蚀性能是由晶粒形貌和析出相的数量及分布共同作用的结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于娟
陆政
鲁原
熊艳才
李国爱
冯朝辉
郝时嘉
关键词 2A97铝锂合金中间形变热处理拉伸性能晶间腐蚀宏微观组织    
Abstract:Effect of intermediate thermomechanical treatment on tensile properties at short-transverse direction, intergranular corrosion, macrostructure and microstructure of 2A97 Al-Li alloy thin plate were studied by tensile testing,intergranular corrosion, EBSD and TEM.The results show that with the increase of compression deformation, the strength and elongation of the alloy increase first and then decrease slightly. When compression deformation is 20%, the grain size of recrystallization is fine and the uniformly dispersed δ' can be found in the grains,δ' phase located in the grain boundary is discontinuously distributed,the tensile property is the best,and the elongation rate is obviously improved;when the compression deformation is 25%, the intergranular corrosion resistance of the alloy is the best. The tensile and corrosion properties of the alloy are jointly affected by the interaction of grain morphology and precipitated phase.
Key words2A97 Al-Li alloy    ITMT    tensile property    intergranular corrosion    macro/microstructure
收稿日期: 2019-02-28      出版日期: 2021-05-21
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51374187,51474195,51504227)
通讯作者: 于娟(1988-),女,工程师,博士,研究方向为铝锂合金,联系地址:北京市81信箱2分箱(100095),yuer1437@126.com     E-mail: yuer1437@126.com
引用本文:   
于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
YU Juan, LU Zheng, LU Yuan, XIONG Yan-cai, LI Guo-ai, FENG Zhao-hui, HAO Shi-jia. Effect of intermediate thermomechanical treatment on microstructure and properties of 2A97 Al-Li alloy. Journal of Materials Engineering, 2021, 49(5): 130-136.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000198      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/130
[1] 杨守杰, 陆政, 苏斌, 等.铝锂合金研究进展[J].材料工程, 2001(5):44-47. YANG S J, LU Z, SU B, et al.Development of aluminum-lithium alloys[J].Journal of Materials Engineering, 2001(5):44-47.
[2] VICNTEE A P, BAPITSTE G, FREDERIC G, et al. Microstructural evolution during ageing of Al-Cu-Li-X alloys[J].Acta Materialia, 2014, 16:199-208.
[3] NIINOMI M, KOLOBNEV N I, CHUISTOV K V, et al.Strengthening and toughening by microstructural control in 2091 Al-Li alloy[J].Proceeding of Incorporation International Conference on Aluminum Ⅳ, 1994, 1:342-350.
[4] GREGSON P J, FLOWER H M. Microstructural control of toughness in aluminum-lithium alloy[J].Acta Metall, 1985, 33(3):527-537.
[5] 蒋呐, 向曙光, 郑子樵.CP276铝锂合金的应变时效工艺[J].中国有色金属学报, 1999, 9(4):694-699. JIANG N, XIANG S G, ZHENG Z Q. Strain-ageing process for Al-Li alloy CP276[J].The Chinese Journal of Nonferrous Metals, 1999, 9(4):694-699.
[6] 周明哲, 易丹青, 贾延琳, 等.预变形对2E12铝合金时效析出过程的影响[J].稀有金属材料与工程, 2010, 39(12):2107-2111. ZHOU M Z, YI D Q, JIA Y L, et al. Effect of pre-deformation on aging precipitation process of 2E12 aluminum alloys[J].Rare Metals and Engineering, 2010, 39(12):2107-2111.
[7] 田荣璋, 王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社, 2000:103-108. TIAN R Z, WANG Z T.Aluminum alloy and its processing manual[M].Changsha:Central South University Press, 2000:103-108.
[8] KANEKO J.Thermomechanical treatment of aluminum alloys[J].Journal of the Japan Society for Heat Treatment, 1981, 21(6):331-336.
[9] LATKOWSKI A.Properties of Al-Cu-Mg alloys after thermomechanical treatment[J].Aluminum, 1986, 62(2):113-115.
[10] YI L, ZHENG Z Q, ZHANG H F, et al.Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy:experiment and BP neural network simulation[J].Transactions of Nonferrous Metals Society of China, 2013, 23:1728-1736.
[11] DI RUSSO E, CONSERVA M, GATTO F.A new thermo-mechanical procedure for improving the ductility and toughness of Al-Zn-Mg-Cu alloys in the transverse direction[J].Materials Science and Engineering, 1974, 14:23-36.
[12] STARKE E A, LIN F S.The influence of grain structure on the ductility of the Al-Cu-Li-Mn-Cd alloy 2020[J].Metallurgical Transaction:A, 1982, 13:2259-2269.
[13] JATA K V, STAKE E A.Fatigue crack growth and fracture toughness behaviour of an Al-Li-Cu alloy[J].Metallurgical Transaction:A, 1986, 17:1011-1026.
[14] VASUDEVANT A K, DOHERTY R D.Aluminum alloy-contemporary research and application[M].New York:Harcourt Brace Jovanvich, 1989:137-167.
[15] FAN X G, JIANG D M, MENG Q C, et al.The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization[J].Materials Letters, 2006, 60(12):1475-1479.
[16] HUMPHREYS F J, HATHERLY M.Recrystallization and related annealing phenomena[M].2nd edition.UK:Elsevier, 2004:169-210.
[17] 张显峰, 李国爱, 陆政, 等.淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响[J].金属学报, 2016, 52(12):1497-1502. ZHANG X F, LI G A, LU Z, et al.Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy[J].Acta Metallurgica Sinica, 2016, 52(12):1497-1502.
[18] SINYAVSLII V S, ULANOVA V V, KALININ V D.On the mechanism of intergranular corrosion of aluminum alloys[J].Protection of Metals, 2004, 40(5):481-490.
[1] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[2] 苏传出, 陈希章, SergeyKonovalov, 卢淑媛, 闻明, 王艳虎. 激光直接沉积CoCrFeNiMn高熵合金: 气孔-组织结构-拉伸性能之间的关系[J]. 材料工程, 2022, 50(3): 43-49.
[3] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[4] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[5] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[6] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[7] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[8] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[9] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[12] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[13] 屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
[14] 郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
[15] 刘铭, 李惠曲, 陈军洲, 李国爱, 陈高红. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn