Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 157-162    DOI: 10.11868/j.issn.1001-4381.2019.000214
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纯钛表面载银微弧氧化陶瓷膜的制备及性能
杜春燕, 赵晖, 赵海涛
沈阳理工大学 材料科学与工程学院, 沈阳 110159
Preparation and properties of Ag-carrying micro-arc oxidation ceramic film on pure titanium surface
DU Chun-yan, ZHAO Hui, ZHAO Hai-tao
School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(2265 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将微弧氧化和水热处理相结合,在纯钛表面制备载银微弧氧化陶瓷膜,改善其润湿性及耐蚀性,并赋予抗菌性。采用扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)对微弧氧化陶瓷膜层进行表征,通过接触角测试评价膜层亲水性,采用电化学测试对膜层耐蚀性进行评价,抗菌性实验分析膜层抗菌性。结果表明:载银微弧氧化陶瓷膜的表面形貌仍为火山多孔结构,纳米级Ag颗粒均匀分布在微孔周围。载银微弧氧化陶瓷膜的表面主要为TiO2和纳米Ag颗粒。载银微弧氧化陶瓷膜的亲水性比纯钛的亲水性高77.0%,比微弧氧化陶瓷膜的高68.2%。与纯钛相比,载银微弧氧化陶瓷膜的自腐蚀电位提高了0.44 V,与微弧氧化相比增加了0.31 V。微弧氧化陶瓷膜的抗菌率为32.2%,载银微弧氧化陶瓷膜的抗菌率大于99.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜春燕
赵晖
赵海涛
关键词 纯钛载银微弧氧化耐蚀性抗菌性    
Abstract:Ag-carrying micro-arc oxidation ceramic film was prepared on the surface of pure titanium by combining micro-arc oxidation and hydrothermal treatment to improve its wettability, corrosion resistance and impart antibacterial properties. The MAO film was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The hydrophilicity of the film was evaluated by contact angle test. The corrosion resistance of the film was evaluated by electrochemical test, and the antibacterial property was analyzed by the antibacterial property test. The results show that the surface morphology of Ag-carrying MAO film remains volcanic porous structure. Nano-scale Ag particles are evenly distributed around the pores. The surface of Ag-carrying MAO film is mainly TiO2 and nano-Ag particles. The hydrophilicity of the Ag-carrying MAO film is 77.0% higher than that of pure titanium, and 68.2% higher than that of MAO film. The self-corrosion potential of Ag-carrying MAO film increases by 0.44 V and 0.31 V compared with pure titanium and MAO film. The antibacterial rate of MAO film is 32.2%. The antibacterial rate of Ag-carrying micro-arc oxidation MAO film is more than 99.9% and has excellent antibacterial property.
Key wordspure titanium    Ag-carrying    micro-arc oxidation    corrosion resistance    antibacterial property
收稿日期: 2019-03-10      出版日期: 2020-08-15
中图分类号:  TG174.4  
通讯作者: 杜春燕(1989-),女,中级实验师,硕士,主要研究方向为材料表面处理,联系地址:辽宁省沈阳市浑南新区南屏中路6号沈阳理工大学材料学院(110159),E-mail:duchunyan1989@126.com     E-mail: duchunyan1989@126.com
引用本文:   
杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
DU Chun-yan, ZHAO Hui, ZHAO Hai-tao. Preparation and properties of Ag-carrying micro-arc oxidation ceramic film on pure titanium surface. Journal of Materials Engineering, 2020, 48(8): 157-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000214      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/157
[1] LONG M,RACK H J.Titanium alloys in total joint replacement-a materials science perspective[J]. Biomaterials,1998,19(18):1621-1639.
[2] BLOYCE P A,QI P Y,DONG H,et al. Surface modification of titanium alloys for combined improvements in corrosion and wear resistance[J]. Surface and Coating Technology,1998,107(2/3):125-132.
[3] BARRI S,MISCHLER S,LADOLT D. Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution[J]. Wear,2005,259(1):282-291.
[4] 王烨,阚全程,余祖江.慢性病毒性肝炎患者抗生素应用的最新进展[J].河南医学研究,2011,20(2):250-253. WANG Y,KAN Q C,YU Z J. The recent advances in the application of antibiotic for patients with chronic virus hepatitis[J].Henan Medical Research,2011,20(2):250-253.
[5] 李宝娥.表面抗菌生物活性涂层的制备和表征[D].上海:中国科学院上海硅酸盐研究所,2008. LI B E. Preparation and characterization of surface antibacterial bioactive coating[D].Shanghai:Shanghai Institute of Silicate,Chinese Academy of Sciences,2008.
[6] STIGTER M,BEZEMER J,DEGROOT K,et al. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants,release and antibiotic efficacy[J].Journal of Controlled Release,2004,99(1):127-137.
[7] 宋仁国.微弧氧化技术的发展及其应用[J].材料工程,2019,47(3):50-62. SONG R G.Development and applications of micro-arc oxidation technology[J]. Journal of Materials Engineering,2019,47(3):50-62.
[8] KOZLOVSKY A,ARTZI Z,MOSES O,et al. Interaction of chlorhexidine with smooth and rough types of titanium surfaces[J]. Journal of Periodontology,2006,77(7):1194-1200.
[9] BARBOUR M E,O'SULLIVAN D J,JAGGER D C. Chlorhexidine adsorption to anatase and rutile titanium dioxide[J].Colloids & Surfaces a Physicochemical & Engineering Aspects, 2007,307(1):116-120.
[10] WU H B,ZHANG X Y,GENG Z H,et al. Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Applied Surface Science,2014,308(20):43-49.
[11] BAGHRICHE O,RTIMI S,PULGARIN C,et al. Innovative TiO2/Cu nano surfaces inactivating bacteria in the minute range under low-intensity actinic light[J]. ACS Applied Materials & Interfaces,2012,4(10):5234-5240.
[12] 吴海波.纯钛表面含Cu抗菌涂层制备及性能研究[D].太原:太原理工大学,2015. WU H B. Preparation and properties research of Cu-bearing anti-bacterial coatings on titanium[J].Taiyuan:Taiyuan University of Technology,2015.
[13] YAO X,ZHANG X,WU H,et al. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J].Applied Surface Science,2014,292(1):944-947.
[14] ZHANG X,WANG H,LI J,et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J].Ceramics International,2016,42(15):17095-17100.
[15] FU T,SHEN Y,ALAJMI Z,et al. Sol-gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy[J]. Ceramics International,2014,40(8):12423-12429.
[16] YU B,LEUNG K M,GUO Q,et al. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application[J]. Nanotechnology,2011,22(11):115603.
[17] YETIM T. Corrosion behavior of Ag-doped TiO2 coatings on commercially pure titanium in simulated body fluid solution[J]. Journal of Bionic Engineering,2016,13(3):397-405.
[18] PISZCZEK P,MUCHEWICZ Z,RADTKE A,et al.CVD of TiO2 and TiO2/Ag antimicrobial layers:deposition from the hexanuclear μ-oxo Ti(Ⅳ)complex as a precursor,and the characterization[J].Surface & Coatings Technology,2013,222(6):38-43.
[19] HOU X G,MA H Y,LIU F,et al. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocataly-tic performance[J]. Journal of Hazardous Materials,2015,299(15):59-66.
[20] SONG W H,RYU H S,HONG S H.Antibacterial properties of Ag(or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J].Journal of Biomedical Materials Research:A,2008,88:242-246.
[21] 夏金兰,王春,刘新星.抗菌剂及抗菌机理[J].中南大学学报(自然科学版),2004,35(1):31-38. XIA J L,WANG C,LIU X X. Research on antimicrobial agents and their mechanisms of actions[J]. J Cent South Univ(Science and Technology),2004,35(1):31-38.
[22] BORGS C,DE C J,KOTECKY R, et al. Does the roughness of the substrate enhance wetting[J]. Physical Review Letters,1995,74(12):2292.
[23] GIORDANO C,VISAI L,PEDEFERRI M P,et al. Antibacterial treatments on titanium for implantology[J].Biomedicine & Pharmacotherapy,2006,60(8):472.
[24] 刘焕亮,王慧杰,袭著.纳米银的抗菌原理及生物安全性研究进展[J].环境与健康杂志,2009,26(8):736-739. LIU H L,WANG H J, XI Z. Progress in research on antibacterial mechanism and biological safety of silver nanoparticles[J]. Journal of Environment and Health,2009,26(8):736-739.
[25] SHRIVASTAVA S,BERA T,ROY A,et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles[J]. Nanotechnology,2007,18(22):8131-8136.
[26] YAMANAKA M,HARA K,KUDO J,et al. Bactericidal actions of a silver ion solution on Escherichia coli,studied by energy-filtering transmission electron microscopy and proteomic analysis[J]. Applied and Environmental Microbiology,2005,71(11):7589-7593.
[1] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[2] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[3] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[4] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[5] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[6] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[7] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[8] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[9] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[10] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[11] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[12] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[13] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[14] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[15] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn