Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 148-154    DOI: 10.11868/j.issn.1001-4381.2019.000219
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铜导线表面热浸镀PbSn合金镀层的组织与性能
姚小飞1, 田伟1, 李楠2, 王萍1, 吕煜坤1
1. 西安工业大学 材料与化工学院, 西安 710021;
2. 西安泰力松新材料股份有限公司, 西安 710119
Microstructure and properties of hot-dip PbSn alloy coating on copper wires
YAO Xiao-fei1, TIAN Wei1, LI Nan2, WANG Ping1, LYU Yu-kun1
1. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
2. Xi'an Telison New Materials Co., Ltd., Xi'an 710119, China
全文: PDF(2873 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了改善铜导线的可焊性和耐蚀性,采用热浸镀技术在铜导线表面制备Pb40Sn60和Pb37Sn63两种成分的低熔点合金镀层,利用扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)等分析手段和电阻率检测实验、拉伸实验、中性盐雾实验等方法,系统研究其微观组织、相成分、电阻率、力学性能及耐蚀性。结果表明:Pb40Sn60和Pb37Sn63两种成分的合金镀层均由α相和β相两相组成,镀层的电阻率分别约为2.6832×10-3,2.5929×10-3 Ω·m,均高于铜基体。铜导线热浸镀Pb40Sn60和Pb37Sn63两种成分合金镀层后的表面硬度分别为13.4,12.6HV0.2;抗拉强度分别为193,180 MPa;伸长率分别为35%和37%,与铜基体相比均降低。铜导线表面热浸镀PbSn合金镀层具有良好的导电性、力学性能及耐腐蚀性等综合性能。随着Pb含量的降低或Sn含量的增加,PbSn合金镀层中α相的相对量减少、β相的相对量增大,其电阻率、硬度和强度降低,塑性略有增大,耐蚀性增强。Pb40Sn60比Pb37Sn63合金镀层的腐蚀速率较高,分别为2.44×10-2,3.65×10-3 g·cm-2·a-1,耐腐蚀性较差。PbSn合金镀层中α相比β相的腐蚀程度更为严重,α相比β相的耐蚀性要差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚小飞
田伟
李楠
王萍
吕煜坤
关键词 铜导线热浸镀PbSn合金电阻率力学性能耐腐蚀性    
Abstract:Hot dip plating was used to prepare Pb40Sn60 and Pb37Sn63 low melting point alloy coatings on copper wires to improve the properties of weldability and corrosion resistance, and the microstructure and phase composition were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Resistivity, mechanical properties and corrosion resistance of the alloy were investigated by the tests of electrical resistivity, tensile and neutral salt spray. The results show that the Pb40Sn60 and Pb37Sn63 alloy coatings are all composed of α phase and β phase, the resistivity of PbSn alloy coatings are all higher than that of copper substrate, the resistivity of Pb40Sn60 alloy coating is 2.6832×10-3Ω·m and Pb37Sn63 alloy coating is 2.5929×10-3 Ω·m. Hardness, strength and plasticity of copper after hot dipped PbSn alloy coatings all decrease, surface hardness of Pb40Sn60 and Pb37Sn63 alloy coatings is respectively 13.4HV0.2 and 12.6HV0.2, tensile strength is respectively 193 MPa and 180 MPa, elongation is respectively 35% and 37%. PbSn alloy coatings on copper wire have good properties of conductivity, mechanical and corrosion resistance. With the decrease of Pb content or the increase of Sn content, the relative amount of α phase is reduced and relative amount of β phase increases in the PbSn alloy coating, resistivity, hardness and strength are all reduced, plasticity increases slightly, its corrosion resistance is enhanced. The corrosion rate of Pb40Sn60 alloy coatings is higher than that of Pb37Sn63 alloy coatings, the corrosion rate of Pb40Sn60 alloy coating is 2.44×10-2 g·cm-2·a-1 and Pb37Sn63 alloy coatings is 3.65×10-3 g·cm-2·a-1, and the corrosion resistance of Pb40Sn60 alloy coatings is relatively poor. The corrosion resistance of α phase is poor than that of β phase, the corrosion degree of α phase is more serious than that of β phase in PbSn alloy coating.
Key wordscopper wire    hot dipping    PbSn alloy    electrical resistivity    mechanical property    corrosion resistance
收稿日期: 2019-03-12      出版日期: 2020-03-18
中图分类号:  TQ153  
通讯作者: 姚小飞(1978-),男,讲师,博士,主要研究方向为金属材料表面改性与腐蚀防护,联系地址:陕西省西安市学府中路2号西安工业大学未央校区材料与化工学院(710021),E-mail:yxf933@126.com     E-mail: yxf933@126.com
引用本文:   
姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
YAO Xiao-fei, TIAN Wei, LI Nan, WANG Ping, LYU Yu-kun. Microstructure and properties of hot-dip PbSn alloy coating on copper wires. Journal of Materials Engineering, 2020, 48(3): 148-154.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000219      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/148
[1] LEE J S,AHN Y S,KANG G H,et al.Recovery of Pb-Sn alloy and copper from photovoltaic ribbon in spent solar module[J].Applied Surface Science,2017,415:137-142.
[2] ZHANG N X,CHINH N,KAWASAKI M,et al.Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion[J].Materials Science and Engineering:A,2016,666:350-359.
[3] KHAN P Y,DEVI M M,BISWAS K.Formation and stability of Pb-Sn embedded multiphase alloy nanoparticles via mechanical alloying[J].Metallurgical and Materials Transactions A,2015,46(8):3365-3377.
[4] LIU C,SONG D J,HAO L F,et al.Study of the microstructure and mechanical properties of PbSn alloys deposited on carbon fiber reinforced epoxy composites[J].Polymers & Polymer Composites,2014,22(2):215-219.
[5] DU D F,HOU L,GAGNOUD A,et al.Effect of an axial high magnetic field on Sn dendrite morphology of Pb-Sn alloys during directional solidification[J].Journal of Alloys and Compounds,2014,588:190-198.
[6] 罗序燕,李东林.铜线材氟硼酸盐高速电镀光亮锡铅及锡铅钴合金[J].表面技术,2004,33(4):67-68. LUO X Y,LI D L.High speed electroplating bright Sn-Pb & Sn-Pb-Co alloy bath on copper wire in fluoroborate plating bath[J]. Surface Technology,2004,33(4):67-68.
[7] 尹娜,曲文卿,杨淑娟,等.金合金锡铅软钎焊接头脆性行为[J].北京航空航天大学学报,2013,39(5):670-673. YIN N,QU W Q,YANG S J,et al.Brittle behavior of gold alloy joint soldered with tin-lead solder[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(5):670-673.
[8] 杜楠,付明.提高小型镀铅锡合金焊接件抗氧化性的工艺研究[J].航空精密制造技术,2012,48(5):33-35. DU N,FU M.Process research on promoting oxidation resistance of lead tin alloy weldment[J].Aviation Precision Manufacturing Technology,2012,48(5):33-35.
[9] 周英伟,高波.Si、Mg、RE对热浸镀锌铝基合金镀层组织与性能的影响研究进展[J].表面技术,2017,46(11):183-189. ZHOU Y W,GAO B.Effects of Si,Mg and RE on microstructure and properties of hot dip galvanized alloy coatings[J].Surface Technology,2017,46(11):183-189.
[10] 李安敏,郑良杰,胡武,等.钢材热浸镀铝的研究进展[J].材料导报,2013,27(9):96-99. LI A M, ZHENG L J,HU W,et al. Advances in research of hot-dip aluminizing technology for steel[J].Materials Review,2013,27(9):96-99.
[11] 孙伟,蔡启舟,罗强.RE对热浸镀铝镀层组织及耐腐蚀性能的影响[J].中国表面工程,2010,23(6):24-29. SUN W,CAI Q Z,LUO Q.Effects of rare earth on microstructure and corrosion resistance of hot-dip aluminum coating[J].China Surface Engineering,2010,23(6):24-29.
[12] 王征,刘平,刘新宽.铜热浸镀铝的组织与性能[J].稀有金属,2015,39(10):955-960. WANG Z,LIU P,LIU X K.Microstructure and performance of hot-dip aluminizing coating of copper[J].Chinese Journal of Rare Metals,2015,39(10):955-960.
[13] 周德琴,陈伟,张秋阳,等.不同基体热浸镀铝镀层组织和高温磨损行为[J].材料工程,2018,46(2):93-98. ZHOU D Q,CHEN W,ZHANG Q Y,et al.Microstructure and high-temperature wear behavior of hot-dipped aluminized coating on different substrate materials[J].Journal of Materials Engineering,2018,46(2):93-98.
[14] 雍薇,黄兴民,张雷,等.热浸镀铝球墨铸铁失效机理研究[J].材料工程,2016,44(8):77-84. YONG W,HUANG X M,ZHANG L,et al.Failure mechanism of hot dip aluminized ductile iron[J].Journal of Materials Engineering,2016,44(8):77-84.
[15] 李锋,吕家舜,杨洪刚,等.热浸镀Zn11Al3Mg0.2Si合金镀层微观组织实验研究[J].表面技术,2011,40(3):32-35. LI F,LV J S,YANG H G,et al.The experiment research of microstructure of hot-dip galvanized Zn11Al3Mg0.2Si alloy coating[J].Surface Technology,2011,40(3):32-35.
[16] 童晨,苏旭平,李智,等.热浸镀Zn-6%Al-3%Mg镀层合金层生长研究[J].材料工程,2013(7):54-60. TONG C,SU X P,LI Z,et al.Research on hot-dipped Zn-6%Al-3%Mg alloy coatings intermetallics layer growth[J].Journal of Materials Engineering,2013(7):54-60.
[17] 周楷尧,汤忠毅,董勇,等.多元低熔点共晶合金Sn16Bi52Pb32和In21Sn12Bi49Pb18凝固组织和相组成研究[J].材料导报,2016,30(11):99-103. ZHOU K Y,TANG Z Y,DONG Y,et al.Microstructure and phase composition of multi-component low-melting-point eutectic alloys Sn16Bi52Pb32 and In21Sn12Bi49Pb18[J].Materials Review,2016,30(11):99-103.
[18] FADIN V V,ALEUTDINOVA M I.Changes in the electric conductance of sliding contacts under occurrence of a Pb-Sn melt in the contact space[J].Russian Physics Journal,2013,55(9):1028-1033.
[19] 李秀辉,燕绍九,洪起虎,等.石墨烯添加量对铜基复合材料性能的影响[J].材料工程,2019,47(1):11-17. LI X H,YAN S J,HONG Q H,et al. Influence of graphene content on properties of Cu matrix composites[J].Journal of Materials Engineering,2019,47(1):11-17.
[20] MENG M,WANG Z B,WANG X,et al.Creep-caused fracture of PbSn solder joint[J].International Journal of Modern Physics B,2017,31:16-19.
[21] 邱萍,严川伟,王福会.Cu/Sn63-Pb37偶对在模拟湿热大气环境中的电化学腐蚀[J].中国腐蚀与防护学报,2007,27(6):329-333. QIU P,YAN C W,WANG F H.Electrochemical corrosion behaviors of the galvanic couple Cu/Sn63-Pb37 in simulated atmosphere[J].Journal of Chinese Society for Corrosion and Protection,2007,27(6):329-333.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[8] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 王子明, 王东星, 陆姗姗, 王鑫, 董星龙. 镍基Ni-Ag复合纳米粒子直流电弧等离子体法制备及其烧结电学性能[J]. 材料工程, 2020, 48(3): 92-97.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[15] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn