Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 155-161    DOI: 10.11868/j.issn.1001-4381.2019.000250
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高导热碳/碳复合材料微观结构及导热性能
姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良
上海大学 材料科学与工程学院 复合材料研究中心, 上海 200072
Microstructure and thermal conductivity of high thermal conductivity carbon/ carbon composites
YAO Yu-min, LI Hong, LIU Zheng-qi, YANG Min, REN Mu-su, SUN Jin-liang
Research Center of Composite Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
全文: PDF(3731 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用国产沥青基碳纤维与中间相沥青制备多孔碳/碳(C/C)复合材料,通过化学气相渗透法(CVI)与前驱体浸渍裂解法(PIP)复合工艺增密,经不同温度高温热处理(HTT)后制备单向C/C复合材料和两向正交C/C复合材料。利用SEM,XRD对不同温度热处理的材料进行微观结构分析,并结合导热机理,分析材料导热性能。结果表明:2300℃热处理后,高导热C/C复合材料结构致密,单向C/C复合材料X向(平行于碳纤维轴向)、两向正交C/C复合材料X向、Y向表现出优异的导热性能;3000℃热处理后,C/C复合材料石墨片层结构明显,石墨化度提高了18.84%,微晶尺寸增大,导热性能进一步提高。两向正交C/C复合材料X向、Y向导热系数可由单向C/C复合材料X向、Z向导热系数计算推导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚彧敏
李红
刘正启
杨敏
任慕苏
孙晋良
关键词 碳/碳复合材料微观结构石墨化度导热性能复合材料设计    
Abstract:Porous carbon/carbon (C/C) composites prepared by pitch-based carbon fiber and mesophase pitch were densified by chemical vapor infiltration (CVI) and precursor impregnation process (PIP). After different heat temperature treatment (HTT), the unidirectional C/C composites and bidirectional C/C composites were obtained. The microstructure of C/C composites was investigated by SEM, XRD, and the thermal conductivity was analyzed based on the thermal conductivity mechanism. The results show that unidirectional C/C composites and bidirectional C/C composites have dense structures and excellent thermal conductivity along the fiber axis. After 3000 ℃ treatment, the structure of graphite flat layers become more distinct and the graphitization degree is increased by 18.84%, leading to higher thermal conductivity. Furthermore, the thermal conductivity in X direction and Y direction of the bidirectional C/C composites can be calculated from that of unidirectional C/C composites in X direction and Z direction.
Key wordscarbon/carbon composites    microstructure    degree of graphitization    thermal conductivity    composites design
收稿日期: 2019-03-19      出版日期: 2020-11-20
中图分类号:  TB332  
基金资助: 
通讯作者: 李红(1979-),女,研究员,博士,现主要从事碳基及陶瓷基复合材料研究,联系地址:上海市宝山区上大路99号上海大学复合材料研究中心(200444),E-mail:lihong2007@shu.edu.cn     E-mail: lihong2007@shu.edu.cn
引用本文:   
姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
YAO Yu-min, LI Hong, LIU Zheng-qi, YANG Min, REN Mu-su, SUN Jin-liang. Microstructure and thermal conductivity of high thermal conductivity carbon/ carbon composites. Journal of Materials Engineering, 2020, 48(11): 155-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000250      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/155
[1] YUAN G, LI X, DONG Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon, 2014,68:413-425.
[2] 樊桢,余立琼,李炜,等. 高导热碳/碳复合材料的设计与制备[J]. 中国材料进展, 2017,36(5):369-376. FAN Z, YU L Q, LI W, et al. Design and preparation of carbon/carbon composites with high thermal conductivity[J]. Materials China, 2017,36(5):369-376.
[3] 陈洁,熊翔,肖鹏. 高导热C/C复合材料的研究进展[J]. 材料导报, 2006, 20(11):431-435. CHEN J, XIONG X, XIAO P. Research and development of high thermal conductivity carbon/carbon composites[J]. Materials Review, 2006,20(11):431-435.
[4] SUK S K, BHOWMIK S R, WINDHORST T, et al. Carbon-carbon composites:a summary of recent developments and applications[J]. Materials & Design, 1997, 18(18):11-15.
[5] 刘皓,李克智,李贺军,等. 微观结构对中间相沥青基碳/碳复合材料力学性能的影响[J]. 无机材料学报, 2007, 22(5):968-972. LIU H, LI K Z, LI H J, et al. Effect of microstructure on mechanical properties of mesophase pitch-based C/C composites[J]. Journal of Inorganic Materials, 2007, 22(5):968-972.
[6] LIT Q, XU Z H, HU Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon, 2010, 48(3):924-925.
[7] MANOCHA L M, WARRIER A, MANOCHA S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-Ⅱ bidirectional composites[J]. Carbon, 2006, 44(3):488-495.
[8] ZHAO Y, LIU Z, WANG H, et al. Microstructure and thermal/mechanical properties of short carbon fiber-reinforced natural graphite flake composites with mesophase pitch as the binder[J]. Carbon, 2013, 53(3):313-320.
[9] FENG W, QIN M, FENG Y. Toward highly thermally conductive all-carbon composites:structure control[J]. Carbon, 2016, 109:575-597.
[10] 王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社, 2004. WANG R G,WU W L,GU W L. Introduction to composite materials[M].Harbin:Harbin Institute of Technology Press,2004.
[11] MANOCHA L M, WARRIER A, MANOCHA S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-Ⅰ unidirectional composites[J]. Carbon, 2006, 44(3):480-487.
[12] ZHANG X, LI X, YUAN G, et al. Large diameter pitch-based graphite fiber reinforced unidirectional carbon/carbon composites with high thermal conductivity densified by chemical vapor infiltration[J]. Carbon, 2017, 114:59-69.
[13] FENG Z H, FAN Z, KONG Q, et al. Effect of high temperature treatment on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials, 2014, 29(5):357-362.
[14] GALLEGO N C, EDIE D D. Structure-property relationships for high thermal conductivity carbon fibers[J]. Composites:Part A, 2001, 32(8):1031-1038.
[15] 黄启忠.高性能炭/炭复合材料的制备、结构与应用[M].长沙:中南大学出版社, 2010. HUANG Q Z. Fabrication, structure and application of high-performance carbon/carbon composites[M]. Changsha:Central South University Press, 2010.
[16] 宁淑丽.石墨烯/中间相沥青基复合碳纤维的制备及其结构性能研究[D].北京:北京化工大学, 2015. NING S L. Preparation and structure properties of graphene/mesophase pitch-based composite carbon fiber[D]. Beijing:Beijing University of Chemical Technology, 2015.
[17] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites:mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016,61:1-28.
[18] 赵建国,李克智,李贺军,等. 碳/碳复合材料导热性能的研究[J]. 航空学报, 2005, 26(4):501-504. ZHAO J G, LI K Z, LI H J, et al. Research on the thermal conductivity of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):501-504.
[19] CARSON J K, LOVATT S J, TANNER D J, et al. Thermal conductivity bounds for isotropic, porous materials[J]. International Journal of Heat and Mass Transfer, 2005, 48(11):2150-2158.
[20] 奚同庚.无机材料热物性学[M].上海:上海科技出版社, 1981. XI T G. Thermophysical properties of inorganic material[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1981.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[3] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[4] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[5] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
[6] 申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
[7] 马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
[8] 宋娜, 崔思奇, 焦德金, 侯兴双, 刘建影, 丁鹏, 施利毅. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46(3): 28-33.
[9] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[10] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
[11] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[12] 陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
[13] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[14] 郗旸, 张淇萱, 李才巨, 谭军, 朱心昆, 王刚, 易健宏. Mo离子注入对纯铜表面纳米层稳定性的影响[J]. 材料工程, 2016, 44(8): 40-45.
[15] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn