Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 87-93    DOI: 10.11868/j.issn.1001-4381.2019.000254
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响
殷小春1,2, 尹有华1,2, 成迪1,2, 杨智韬1,2
1. 华南理工大学 聚合物新型成型装备国家工程研究中心, 广州 510640;
2. 华南理工大学 聚合物成型加工工程教育部重点实验室, 广州 510640
Microstructure and properties of PA6/HDPE/CNTs blends of different mixing sequences under normal stress dominated flow field
YIN Xiao-chun1,2, YIN You-hua1,2, CHENG Di1,2, YANG Zhi-tao1,2
1. National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, China;
2. Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
全文: PDF(3064 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用自行研制的叶片式混炼装置,实现了正应力支配下聚合物复合体系的熔融共混。实验研究了混合顺序以及混合时间对高密度聚乙烯(HDPE)/尼龙6(PA6)/碳纳米管(CNTs)共混物的微观结构、流变特性、热性能及宏观力学性能的影响。结果表明:正应力支配作用能在短混合时间内实现PA6粒子和CNTs的均匀分散,分散效率高;相比于将HDPE,PA6,CNTs三者同时共混或者是先将PA6与CNTs混炼制成母料,再与HDPE共混这两种混合顺序,先将HDPE与CNTs混炼制成母料,再与PA6共混制得的共混物中分散相PA6粒径最小,分散更均匀,共混物的热性能以及力学性能更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷小春
尹有华
成迪
杨智韬
关键词 正应力支配碳纳米管高密度聚乙烯尼龙6混合顺序    
Abstract:Melt blending method dominated by normal stress for polymer-based composite was realized via a self-developed vane mixer. Effects of mixing sequences and mixing time on the microstructure, rheological properties, thermal properties and tensile strength of PA6/HDPE/CNTs ternary blend were experimentally investigated. SEM results show that the normal stress flow field can realize the uniform dispersion of PA6 and CNTs in a short time. Compared with the other two mixing sequences, the blend of the mixing sequence that HDPE and CNTs are firstly mixed to form the masterbatch, and then the masterbatch is mixed with PA6 (HDPE/CNTs+PA6) has the smallest PA6 particle size; DSC results show that Xc is significantly affected by the mixing sequence; mechanical properties show that the better tensile strength is obtained when the mixing sequence is HDPE/CNTs+PA6 and proper mixing time can further improve the tensile strength of the blend.The results aforementioned indicate that the normal stress flow field provides enough energy for the CNTs to overcome the energy barrier of the HDPE/PA6 two-phase interface and migrate into the PA6 phase, which proves that the normal stress flow field has higher dispersion efficiency.
Key wordsnormal stress dominated    carbon nano-tubes (CNTs)    high-density polyethylene (HDPE)    polyamide 6 (PA6)    mixing sequence
收稿日期: 2019-03-21      出版日期: 2020-03-03
中图分类号:  TQ325  
通讯作者: 杨智韬(1981-),男,副教授,博士,主要从事高分子材料加工装备以及高分子材料改性研究,联系地址:广东省广州市天河区华南理工大学聚合物新型成型装备国家工程研究中心(510640),E-mail:meztyang@scut.edu.cn     E-mail: meztyang@scut.edu.cn
引用本文:   
殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
YIN Xiao-chun, YIN You-hua, CHENG Di, YANG Zhi-tao. Microstructure and properties of PA6/HDPE/CNTs blends of different mixing sequences under normal stress dominated flow field. Journal of Materials Engineering, 2020, 48(2): 87-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000254      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/87
[1] AGRAWAL P,RODRIGUES A W B,ARAUJO E M,et al. Influence of reactive compatibilizers on the rheometrical and mechanical properties of PA6/LDPE and PA6/HDPE blends[J].Journal of Materials Science,2010,45(2):496-502.
[2] NAYAK G C,SAHOO S,DAS S,et al.Compatibilization of polyetherimide/liquid crystalline polymer blend using modified multiwalled carbon nanotubes and polyphosphazene as compatibilizers[J].Journal of Applied Polymer Science,2012,124(1):629-637.
[3] 向芳明.碳纳米管改性不相容共混物HDPE/PA6的研究[D].成都:西南交通大学,2011. XIANG F M.Modification of immiscible HDPE/PA6 blends using carbon nanotubes[D]. Chengdu: Southwest Jiaotong University,2011.
[4] 黄星.共混改性制备抗菌性耐污染聚醚砜超滤膜的研究[D].青岛:中国海洋大学,2014. HUANG X. Study on preparation of ultrafiltration membrane with antibacterial and anti-fouling performance by blend modification[D].Qingdao:Ocean University of China,2014.
[5] 余忠伟.体积拉伸式塑料混炼装置开发及其在不同黏度差别体系中应用[D].广州:华南理工大学,2016. YU Z W.Development of a plastic compounder by volume extension and its application on process of different viscosity blends[D].Guangzhou:South China University of Technology,2016.
[6] HU G H,SUN Y J,LAMBLA M. Devolatilization:a critical sequential operation for in situ compatibilization of immiscible polymer blends by one-step reactive extrusion[J].Polymer Engineering and Science,2010,36(5):676-684.
[7] PIAH M R M,BAHARUM A,ABDULLAH I.Mechanical properties of bio-composite natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK)[J].Polymers & Polymer Composites,2016,24(9):767-773.
[8] TADMOR Z,GOGOS C G.Principles of polymer processing[M]. Hoboken,New Jersey:John Wiley & Sons,2013.
[9] 王小林.偏心圆筒中拉伸-剪切流动比例的调节方法与原理[D].广州:华南理工大学,2015. WANG X L.The method and principle of regulating the radio of extensional-shear flow between eccentric cylinders[D].Guangzhou:South China University of Technology,2015.
[10] JIA S K,QU J P,LIU W F,et al. Thermoplastic polyurethane/polypropylene blends based on novel vane extruder:a study of morphology and mechanical properties[J].Polymer Engineering and Science,2014,54(3):716-724.
[11] YIN X C,YU Z W,ZENG W B,et al. The design and performance of a vane mixer based on extensional flow for polymer blends[J].Journal of Applied Polymer Science,2015,132(9):41551.
[12] SARASINI F,TIRILLO J,SERGI C,et al.Effect of basalt fibrehybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites[J].Composite Structures,2018,188:394-406.
[13] 马鹏飞,王鑫,李栋辉,等.聚合物共混物增容技术及发展[J].材料工程,2019,47(2):26-33. MA P F,WANG X, LI D H,et al. Progress of compatibilization methods in polymer blends[J].Journal of Materials Engineering,2019,47(2):26-33.
[14] HUANG T,YANG J H,ZHANG N,et al. Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotube[J].Polymer Bulletin,2018,75(6):2641-2655.
[15] 孙莉莉,钟艳莉.碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J].材料工程,2013(4):17-22. SUN L L,ZHONG Y L.Crystallization and dielectric properties of carbon nanofiber/high-density polyethylene composites[J].Journal of Materials Engineering,2013(4):17-22.
[16] RUIZ-RUBIO L,VILAS J L,RODRIGUEZ M,et al.Thermal behavior of H-bonded interpolymer complexes based on polymers with acrylamide or lactame groups and poly (acrylic acid):influence of N-alkyl and α-methyl substitutions[J].Polymer Degradation and Stability,2014,109:147-153.
[1] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[2] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[3] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[4] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[5] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[6] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[7] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[8] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[9] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[10] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
[11] 黄伟江, 何文涛, 龙丽娟, 杨二钘, 秦舒浩, 于杰. 新型含磷高温尼龙的阻燃和力学性能[J]. 材料工程, 2018, 46(7): 68-75.
[12] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[13] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[14] 宋娜, 崔思奇, 焦德金, 侯兴双, 刘建影, 丁鹏, 施利毅. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46(3): 28-33.
[15] 韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn