Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 100-107    DOI: 10.11868/j.issn.1001-4381.2019.000259
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用
刘继涛1,2, 钏定泽1, 杨泽斌1, 陈希亮1, 颜廷亭1, 陈庆华1
1. 昆明理工大学 材料科学与工程学院, 昆明 650093;
2. 云南白药集团股份有限公司, 昆明 650500
Synthesis and characterization of amino acids/hydroxyapatite composites for in vitro remi-neralization of acid-etched bovine enamel
LIU Ji-tao1,2, CHUAN Ding-ze1, YANG Ze-bin1, CHEN Xi-liang1, YAN Ting-ting1, CHEN Qing-hua1
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Yunnan Baiyao Group Co., Ltd., Kunming 650500, China
全文: PDF(3878 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在不同浓度丝氨酸(Ser),天冬氨酸(Asp)和谷氨酸(Glu)的组合下制备氨基酸/羟基磷灰石(AA/HAP)复合材料。通过红外光谱仪、X射线衍射仪和透射电镜对复合材料进行表征,评估复合材料对酸蚀牛牙釉质体外再矿化的效果。结果表明:氨基酸(AA)会干扰羟基磷灰石(HAP)晶面的生长,使HAP的溶解度增加和晶体结构有序性降低。X射线衍射图及透射电镜图的结果显示,AA对HAP的[100]晶向具有显著的抑制作用,且与不含AA的HAP相比,AA修饰的HAP复合材料具有细化的晶粒尺寸。通过CCK-8法评估了材料的细胞毒性,结果表明AA/HAP复合材料的相对细胞活性优于HAP。场发射扫描电镜图表明不含AA的HAP材料和两组不同浓度AA改性HAP材料均可修复酸蚀牛牙釉质的表面龋损。而在Ser,Asp和Glu均为10 mmol·L-1条件下制备的AA/HAP可在牛牙釉质的深层再矿化中生成厚度约为22 μm的致密再矿化层,并获得了最佳的表面显微硬度恢复效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘继涛
钏定泽
杨泽斌
陈希亮
颜廷亭
陈庆华
关键词 氨基酸羟基磷灰石复合材料生物相容性牙釉质再矿化    
Abstract:Amino acids modified hydroxyapatite (AA/HAP) composites were synthesized in the presence of different concentrations of serine (Ser), aspartic acid (Asp) and glutamic acid (Glu). The composites were characterized by Fourier transform infrared spectrometer, X-ray diffractometer (XRD) and transmission electron microscope (TEM), and were evaluated in the in vitro remineralization of acid-etched bovine enamel. The results show that amino acids (AA)can interfere with the growth of HAP crystal plane, resulting in the increase of the solubility and decrease of the ordered structure of the HAP crystals. XRD patterns and TEM analysis show that AA has a significant inhibitory effect on the[100] crystalline direction of HAP.Meanwhile, the HAP composites modified by AA have refined crystalline size when compared with the HAP without AA. The cytotoxicity of the materials was evaluated by CCK-8 assay and the results show that the relative cell activity of AA/HAP composites is better than the HAP. Field emission scanning electron microscope images show that the HAP without amino acids and the HAP modified with two different concentrations of amino acids both can repair the surface lesions of bovine enamel. While only the AA/HAP synthesized in the presence of 10 mmol·L-1 Ser, Asp and Glu generates a dense remineralization layer with a thickness of approximately 22 μm in the subsurface restoration, and obtains the best surface microhardness recovering.
Key wordsamino acid    hydroxyapatite    composite    biocompatibility    enamel    remineralization
收稿日期: 2019-03-21      出版日期: 2020-03-03
中图分类号:  R318.08  
通讯作者: 陈庆华(1962-),男,教授,博士,博士生导师,研究方向为生物医用材料,联系地址:云南省昆明市五华区学府路253号昆明理工大学材料科学与工程学院大楼635(650093),E-mail:847501438@qq.com     E-mail: 847501438@qq.com
引用本文:   
刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
LIU Ji-tao, CHUAN Ding-ze, YANG Ze-bin, CHEN Xi-liang, YAN Ting-ting, CHEN Qing-hua. Synthesis and characterization of amino acids/hydroxyapatite composites for in vitro remi-neralization of acid-etched bovine enamel. Journal of Materials Engineering, 2020, 48(2): 100-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000259      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/100
[1] 李小科,王进防,常江. 牙釉质再矿化综述[J]. 口腔护理用品工业, 2017, 27(2):18-26. LI X K, WANG J F, CHANG J,et al.The remineralisation of enamel: a review of the literature [J]. Oral Care Industry, 2017, 27(2): 18-26.
[2] HE L H, SWAIN M V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1):18-29.
[3] FAN Y, NELSON J R, ALVAREZ J R, et al. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration[J]. Acta Biomaterialia, 2011, 7(5):2293-2302.
[4] LI Q L, NING T Y, CAO Y, et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel[J]. BMC Biotechnology, 2014, 14(1):1-11.
[5] LE N E, KWAK S Y, WIEDEMANNBIDLACK F B, et al. Leucine-rich amelogenin peptides regulate mineralization in vitro[J]. Journal of Dental Research, 2011, 90(9):1091-1097.
[6] WU D, YANG J, LI J, et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel[J]. Biomaterials, 2013, 34(21):5036-5047.
[7] 毛文文,茹江英. 羟基磷灰石类陶瓷在骨组织工程中的研究与更广泛应用[J]. 中国组织工程研究, 2018, 22(30):4855-4863. MAO W W, RU J Y. Hydroxyapatite ceramics in bone tissue engineering: research and extensive applications [J]. Chinese Journal of Tissue Engineering Research, 2018, 22(30): 4855-4863.
[8] LELLI M, PUTIGNANO A, MARCHETTI M, et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study[J]. Frontiers in Physiology, 2014, 5:1-7.
[9] VENEGAS S C, PALACIOS J M, APELLA M C, et al. Calcium modulates interactions between bacteria and hydroxyapatite[J]. Journal of Dental Research, 2006, 85(12):1124-1128.
[10] DUVERGER O, BENIASH E, MORASSO M I. Keratins as components of the enamel organic matrix[J]. Matrix Biology, 2016, 52/54:260-265.
[11] WIEDEMANN-BIDLACK F B, KWAK S Y, BENIASH E, et al. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro[J]. Journal of Structural Biology, 2011, 173(2):250-260.
[12] LI L, MAO C, WANG J, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Advanced Materials, 2011, 23(40):4695-4701.
[13] WU X, ZHAO X, LI Y, et al. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method[J]. Materials Science and Engineering: C, 2015, 54:150-157.
[14] FAN Z J, WANG J Q, WANG Z F, et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering[J]. Carbon, 2014, 66(1):407-416.
[15] MATSUMOTO T, OKAZAKI M, INOUE M, et al. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid[J]. Biomaterials, 2002, 23(10):2241-2247.
[16] GONZALEZ-MCQUIRE R, CHANE-CHING J Y, VIGNAUD E, et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods[J]. Journal of Materials Chemistry, 2004,14(14):2277-2281.
[17] JACK K S, VIZCARRA T G, TRAU M. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles[J]. Langmuir, 2007, 23(24):12233-12242.
[18] BOANINI E, TORRICELLI P, GAZZANO M, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells[J]. Biomaterials, 2006, 27(25):4428-4433.
[19] PARK S Y, KIM K I, PARK S P, et al. Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres[J]. Crystal Growth & Design, 2016, 16(8):4318-4326.
[20] MATSUMOTO T, OKAZAKI M, INOUE M, et al. Role of acidic amino acid for regulating hydroxyapatite crystal growth[J]. Dental Materials Journal, 2006, 25(2):360-364.
[21] WHITE S N, LUO W, PAINE M L, et al. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel[J]. Journal of Dental Research, 2001, 80(1):321-326.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[15] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn