1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Yunnan Baiyao Group Co., Ltd., Kunming 650500, China
Amino acids modified hydroxyapatite (AA/HAP) composites were synthesized in the presence of different concentrations of serine (Ser), aspartic acid (Asp) and glutamic acid (Glu). The composites were characterized by Fourier transform infrared spectrometer, X-ray diffractometer (XRD) and transmission electron microscope (TEM), and were evaluated in the in vitro remineralization of acid-etched bovine enamel. The results show that amino acids (AA)can interfere with the growth of HAP crystal plane, resulting in the increase of the solubility and decrease of the ordered structure of the HAP crystals. XRD patterns and TEM analysis show that AA has a significant inhibitory effect on the [100] crystalline direction of HAP.Meanwhile, the HAP composites modified by AA have refined crystalline size when compared with the HAP without AA. The cytotoxicity of the materials was evaluated by CCK-8 assay and the results show that the relative cell activity of AA/HAP composites is better than the HAP. Field emission scanning electron microscope images show that the HAP without amino acids and the HAP modified with two different concentrations of amino acids both can repair the surface lesions of bovine enamel. While only the AA/HAP synthesized in the presence of 10 mmol·L-1 Ser, Asp and Glu generates a dense remineralization layer with a thickness of approximately 22 μm in the subsurface restoration, and obtains the best surface microhardness recovering.
LI X K , WANG J F , CHANG J , et al. The remineralisation of enamel: a review of the literature[J]. Oral Care Industry, 2017, 27 (2): 18- 26.
2
HE L H , SWAIN M V . Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1 (1): 18- 29.
doi: 10.1016/j.jmbbm.2007.05.001
3
FAN Y , NELSON J R , ALVAREZ J R , et al. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration[J]. Acta Biomaterialia, 2011, 7 (5): 2293- 2302.
doi: 10.1016/j.actbio.2011.01.028
4
LI Q L , NING T Y , CAO Y , et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel[J]. BMC Biotechnology, 2014, 14 (1): 1- 11.
doi: 10.1186/1472-6750-14-1
5
LE N E , KWAK S Y , WIEDEMANNBIDLACK F B , et al. Leucine-rich amelogenin peptides regulate mineralization in vitro[J]. Journal of Dental Research, 2011, 90 (9): 1091- 1097.
doi: 10.1177/0022034511411301
6
WU D , YANG J , LI J , et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel[J]. Biomaterials, 2013, 34 (21): 5036- 5047.
doi: 10.1016/j.biomaterials.2013.03.053
MAO W W , RU J Y . Hydroxyapatite ceramics in bone tissue engineering: research and extensive applications[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (30): 4855- 4863.
8
LELLI M , PUTIGNANO A , MARCHETTI M , et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study[J]. Frontiers in Physiology, 2014, 5, 1- 7.
9
VENEGAS S C , PALACIOS J M , APELLA M C , et al. Calcium modulates interactions between bacteria and hydroxyapatite[J]. Journal of Dental Research, 2006, 85 (12): 1124- 1128.
doi: 10.1177/154405910608501211
10
DUVERGER O , BENIASH E , MORASSO M I . Keratins as components of the enamel organic matrix[J]. Matrix Biology, 2016, 52/54, 260- 265.
doi: 10.1016/j.matbio.2015.12.007
11
WIEDEMANN-BIDLACK F B , KWAK S Y , BENIASH E , et al. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro[J]. Journal of Structural Biology, 2011, 173 (2): 250- 260.
doi: 10.1016/j.jsb.2010.11.006
12
LI L , MAO C , WANG J , et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Advanced Materials, 2011, 23 (40): 4695- 4701.
doi: 10.1002/adma.201102773
13
WU X , ZHAO X , LI Y , et al. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method[J]. Materials Science and Engineering: C, 2015, 54, 150- 157.
doi: 10.1016/j.msec.2015.05.006
14
FAN Z J , WANG J Q , WANG Z F , et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering[J]. Carbon, 2014, 66 (1): 407- 416.
15
MATSUMOTO T , OKAZAKI M , INOUE M , et al. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid[J]. Biomaterials, 2002, 23 (10): 2241- 2247.
doi: 10.1016/S0142-9612(01)00358-1
16
GONZALEZ-MCQUIRE R , CHANE-CHING J Y , VIGNAUD E , et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods[J]. Journal of Materials Chemistry, 2004, 14 (14): 2277- 2281.
doi: 10.1039/b400317a
17
JACK K S , VIZCARRA T G , TRAU M . Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles[J]. Langmuir, 2007, 23 (24): 12233- 12242.
doi: 10.1021/la701848c
18
BOANINI E , TORRICELLI P , GAZZANO M , et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells[J]. Biomaterials, 2006, 27 (25): 4428- 4433.
doi: 10.1016/j.biomaterials.2006.04.019
19
PARK S Y , KIM K I , PARK S P , et al. Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres[J]. Crystal Growth & Design, 2016, 16 (8): 4318- 4326.
20
MATSUMOTO T , OKAZAKI M , INOUE M , et al. Role of acidic amino acid for regulating hydroxyapatite crystal growth[J]. Dental Materials Journal, 2006, 25 (2): 360- 364.
doi: 10.4012/dmj.25.360
21
WHITE S N , LUO W , PAINE M L , et al. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel[J]. Journal of Dental Research, 2001, 80 (1): 321- 326.
doi: 10.1177/00220345010800010501