Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 1-12    DOI: 10.11868/j.issn.1001-4381.2019.000266
  综述 本期目录 | 过刊浏览 | 高级检索 |
非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展
王志远1,2, 邢志国2, 王海斗2, 单德彬1
1. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001;
2. 陆军装甲兵学院 装备再制造技术国防科技重点实验室, 北京 100072
Research progress in influence of non-metallic inclusion characteristics on fatigue properties of iron and steel materials
WANG Zhi-yuan1,2, XING Zhi-guo2, WANG Hai-dou2, SHAN De-bin1
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
全文: PDF(2158 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了非金属夹杂物对钢铁材料疲劳性能的影响及研究现状,从夹杂物的角度出发,首先介绍非金属夹杂物特征提取的最新研究进展,分别从实验测量方法和数学公式科学统计方法两方面进行论述;其次根据夹杂物对于疲劳损伤的主要原理,介绍5种应用较为广泛的定量化分析夹杂物特征参数与钢材疲劳性能的数学模型;然后以夹杂物的形貌特征、力学性能以及与基体之间的相互作用为出发点,探究非金属夹杂物的特性对重载零件钢材疲劳性能的影响。最后指出从多角度解析非金属夹杂物对钢材疲劳性能的主要作用机理,构建非金属夹杂物对钢材疲劳寿命预测模型是未来该领域的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志远
邢志国
王海斗
单德彬
关键词 钢铁材料非金属夹杂物定量分析疲劳性能    
Abstract:The effects of non-metallic inclusions on the fatigue properties of iron and steel materials and their research status were reviewed. From the perspective of inclusions, the latest research progress on the extraction of non-metallic inclusions was first introduced from the experimental measurement methods and mathematical formulas. Secondly, according to the main principles of inclusions for fatigue damage, five kinds of widely used quantitative analysis of inclusion parameters and math-ematical model of steel fatigue performance were introduced.Then the influence of the characteristics of non-metallic inclusions on the fatigue properties of heavy-duty steel parts was investigated by taking the morphology, mechanical properties and the interaction between the inclusions and the matrix as the starting point. Finally, it was pointed out that the focus of future research in this field is to analyze the main action mechanism of non-metallic inclusions on steel fatigue properties from multiple perspectives and to build a prediction model of non-metallic inclusions on steel fatigue life.
Key wordsiron and steel material    non-metallic inclusion    quantitative analysis    fatigue property
收稿日期: 2019-03-25      出版日期: 2020-05-28
中图分类号:  TG142  
通讯作者: 王海斗(1969-),男,研究员,博士,主要从事表面工程与摩擦学研究以及金属结构件疲劳性能检测,联系地址:北京市丰台区杜家坎21号院陆军装甲兵学院(100072),E-mail:wanghaidou@aliyun.com     E-mail: wanghaidou@aliyun.com
引用本文:   
王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
WANG Zhi-yuan, XING Zhi-guo, WANG Hai-dou, SHAN De-bin. Research progress in influence of non-metallic inclusion characteristics on fatigue properties of iron and steel materials. Journal of Materials Engineering, 2020, 48(5): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000266      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/1
[1] 王驰,冉广,雷鹏辉,等. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5):151-158. WANG C, RAN G, LEI P H, et al. Fatigue and high-temperature tensile properties of SA508 Gr.3 Cl.1 steel[J]. Journal of Materials Engineering, 2018, 46(5):151-158.
[2] KREWERTH D, LIPPMANN T, WEIDNER A, et al. Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 84:40-52.
[3] MOGHADDAM S M, SADEGHI F. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue[J]. Tribology Transactions, 2016, 59(6):1142-1156.
[4] STINVILLE J C, MARTIN E, KARADGE M, et al. Competing modes for crack initiation from non-metallic inclusions and intrinsic microstructural features during fatigue in a polycrystalline nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2018, 49(9):3865-3873.
[5] SHIMOJI I, NATORI M, HIDAKA H, et al. Effect of neighboring-microstructure on the rolling contact fatigue around non-metallic inclusion[J]. MATEC Web of Conferences, 2018, 165:4-15.
[6] 何群雄,孙时秋. GB/T 10561-2005钢中非金属夹杂物含量的测定——标准评级图显微检验法介绍[J]. 理化检验-物理分册, 2007, 43(1):43-47. HE Q X, SUN S Q. Introduction to steel-determination of content of nonmetallic inclusions-micrographic method using standards diagrams GB/T 10561-2005[J]. Physical Testing and Chemical Analysis (Part A:Physical Testing),2007, 43(1):43-47.
[7] 孟耀青,王昆鹏,郑永瑞. 1950 MPa级弹簧钢55SiCrA疲劳断口夹杂物来源分析[J]. 钢铁研究学报, 2017, 29(10):859-864. MENG Y Q, WANG K P, ZHENG Y R. Analysis of sources of inclusions induced fatigue fracture in 1950 MPa grade spring steel 55SiCrA[J].Journal of Iron and Steel Research, 2017, 29(10):859-864.
[8] YANG Y D, PAUL W, ZHANG G F,et al. Inclusion characterization in high strength low alloy steel for pipeline application[J]. Journal of Iron and Steel Research,International, 2011,18(Suppl 1/2):762-768.
[9] ZHANG G X, HUA Y S, SHEN Y W, et al. The sensitivity of the focused ultrasonic method used in inclusion testing of the thick steel specimen[J]. Applied Mechanics and Materials, 2013, 455:253-260.
[10] 张立峰,杨文,张学伟,等. 钢中夹杂物的系统分析技术[J]. 钢铁, 2014, 49(2):1-8. ZHANG L F, YANG W, ZHANG X W, et al. Systematic analysis of non-metallic inclusions in steel[J]. Iron and Steel, 2014, 49(2):1-8.
[11] LIU H, LIU J, MICHELIC S K, et al. Characterization and analysis of non-metallic inclusions in low-carbon Fe-Mn-Si-Al TWIP steels[J]. Steel Research International, 2016, 87(12):1723-1732.
[12] SHIM J H, OH Y J, SUH J Y, et al. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels[J]. Acta Materialia, 2001, 49(12):2115-2122.
[13] 李阳,孙海波,兰鹏,等. 不同电解方法萃取SPHC钢中非金属夹杂物的研究[J]. 武汉科技大学学报, 2015, 38(6):408-412. LI Y, SUN H B, LAN P, et al. Extraction of non-metallic inclusions in SPHC steel by different electrolysis methods[J]. Journal of Wuhan University of Science and Technology, 2015, 38(6):408-412.
[14] MURAKAMI Y, ENDO M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3):163-182.
[15] SHI G, ATKINSON H V, SELLARS C M, et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels[J]. Acta Materialia, 1999, 47(5):1455-1468.
[16] SHI G, ATKINSON H V, SELLARS C M, et al. Computer simulation of the estimation of the maximum inclusion size in clean steels by the generalized Pareto distribution method[J]. Acta Materialia, 2001, 49(10):1813-1820.
[17] DEY A K, DAS K P. Modeling extreme hurricane damage using the generalized Pareto distribution[J]. American Journal of Mathematical and Management Sciences, 2016, 35(1):55-66.
[18] PARK M H, KIM J H T. Estimating extreme tail risk measures with generalized Pareto distribution[J]. Computational Statistics & Data Analysis, 2016, 98:91-104.
[19] CHEN H, CHENG W, RONG Y, et al. Fitting the generalized Pareto distribution to data based on transformations of order statistics[J]. Journal of Applied Statistics, 2019,46(3):432-448.
[20] SUN Z, WEI L, DENG H, et al. Fisheye failure analysis and life design approach for case-carburized gear steel based on statistical evaluation of defect size[J]. Engineering Failure Analysis, 2016, 59:28-40.
[21] FROST N E, POOK L P, DENTON K. A fracture mechanics analysis of fatigue crack growth data for various materials[J]. Engineering Fracture Mechanics, 1971, 3(2):109-126.
[22] TODA H, OOGO H, HORIKAWA K, et al. The true origin of ductile fracture in aluminum alloys[J]. Metallurgical and Materials Transactions A, 2014, 45(2):765-776.
[23] LI W, PARKER S, ROSE A, et al. Effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite[J]. Metallurgical and Materials Transactions A, 2016, 47(7):3387-3396.
[24] PETERSON R E. The role of stress distribution in fatigue[J]. Experimental Mechanics, 1961, 1(4):105-115.
[25] RODOPOULOS C A. Fatigue damage map as a virtual tool for fatigue damage tolerance[M]. New York:Virtual Testing and Predictive Modeling,Springer US Press, 2009:15-18.
[26] SMITH R A. On the short crack limitations of fracture mechanics[J]. International Journal of Fracture, 1977, 13(13):717-720.
[27] HADDAD M H E, TOPPER T H, SMITH K N. Prediction of non-propagating cracks[J]. Engineering Fracture Mechanics, 1979, 11(3):573-584.
[28] TANAKA M, NAKAMURA F, MIZOKAWA S, et al. Establishment and assessment of a rat model of fatigue[J]. Neuroscience Letters, 2003, 352(3):159-162.
[29] McEVILY A J, ENDO M, MURAKAMI Y. On the relationship and the short fatigue crack threshold[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 26(3):269-278.
[30] USAMI S, SHIDA S. Elastic-plastic analysis of the fatigue limit for a material with small flaws[J]. Fatigue & Fracture of Engineering Materials & Structures, 1979, 1(4):471-481.
[31] ABDEL R H, TOPPER T H, PLUMTREE A. A short fatigue crack model based on the nature of the free surface and its microstructure[J]. Scripta Metallurgica et Materialia, 1991, 25(3):597-602.
[32] REGE K, PAVLOU D G. A one-parameter nonlinear fatigue damage accumulation model[J]. International Journal of Fatigue, 2017, 98:234-246.
[33] AYAR P, MORENO-NAVARRO F, SOL-SÁNCHEZ M, et al. Exploring the recovery of fatigue damage in bituminous mixtures:the role of rest periods[J]. Materials and Structures, 2018, 51(1):25.
[34] AERAN A, SIRIWARDANE S C, MIKKELSEN O, et al. A new nonlinear fatigue damage model based only on S-N curve parameters[J]. International Journal of Fatigue, 2017, 103:327-341.
[35] MURAKAMI Y, NOMOTO T, UEDA T,et al. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part Ⅰ:influence of hydrogen trapped by inclusions[J]. Fatigue & Fracture of Engineering Materials & Structures,2000,23(11):893-902.
[36] WANG Q Y, BERARD J Y, DUBARRE A,et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22:667-672.
[37] AKINIWA Y, MIYAMOTO N, TSURU H, et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime[J]. International Journal of Fatigue,2006,28(11):1555-1565.
[38] LIU Y B, LI Y D, LI S X, et al. Prediction of the S-N curves of high strength steels in the very high cycle fatigue regime[J]. International Journal of Fatigue,2010,32:1351-1357.
[39] DESMORAT R, KANE A, SEYEDI M, et al. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue[J]. European Journal of Mechanics, 2007, 26(6):909-935.
[40] MILO E I, GARB C, WINTER G, et al. Effects of inclusions on the very high cycle fatigue properties of a high strength martensitic steel within the transition area[J]. Procedia Structural Integrity, 2017, 7:327-334.
[41] CARRION P E, SHAMSAEI N, DANIEWICZ S R, et al. Fatigue behavior of Ti-6Al-4V including mean stress effects[J]. International Journal of Fatigue, 2017, 99:87-100.
[42] NARAGANI D, SANGID M D, SHADE P A, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy[J]. Acta Materialia, 2017, 137:71-84.
[43] GILLNER K, HENRICH M, MUNSTERMANN S. Numerical study of inclusion parameters and their influence on fatigue lifetime[J]. International Journal of Fatigue, 2018, 111:70-80.
[44] YANG Y, LIN Y, ZHANG Y. Average capacity of the ground to train communication link of a curved track in the turbulence of gamma-gamma distribution[J]. Optics Communications, 2017, 389:68-73.
[45] KIESSLING R. Nonmetallic inclusions and their effects on the properties of ferrous alloys[J]. Encyclopedia of Materials Science and Technology, 2001:6278-6283.
[46] WU Q, QIANG X. Interactive mechanisms of sulfide inclusions and environmental factors in low cycle fatigue process of pressure vessel steels in high temperature water[J]. Materials Science Forum, 2005, 475/479:253-256.
[47] HASHIMOTO K. Effect of sulphide inclusions on rolling contact fatigue life of bearing steels[J]. Materials Science and Technology, 2013, 28(1):39-43.
[48] MAKINO T, NEISHI Y, SHIOZAWA D, et al. Rolling contact fatigue damage from artificial defects and sulphide inclusions in high strength steel[J]. Procedia Structural Integrity, 2017, 7:468-475.
[49] CYRIL N S, FATEMI A. Experimental evaluation and modeling of sulfur content and anisotropy of sulfide inclusions on fatigue behavior of steels[J]. International Journal of Fatigue, 2009, 31(3):526-537.
[50] ROESSLE M L, FATEMI A. Strain-controlled fatigue properties of steels and some simple approximations[J]. International Journal of Fatigue, 2000, 22(6):495-511.
[51] 李冬玲,李美玲,贾云海,等. 钢中硅系夹杂物含量的原位统计分布分析[J]. 冶金分析, 2011, 31(1):1-6. LI D L, LI M L, JIA Y H, et al. Quantitative analysis of silicon inclusions in steel by original position statistic distribution analysis technique[J]. Metallurgical Analysis,2011, 31(1):1-6.
[52] BELLOT J P, KROLL J S, GISSL B M, et al. Toward better control of inclusion cleanliness in a gas stirred ladle using multiscale numerical modeling[J]. Materials, 2018, 11(7):1179-1182.
[53] SHI C B, CHEN X C, GUO H J, et al. Control of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting of die steel[J]. Metallurgical and Materials Transactions B, 2013, 44(2):378-389.
[54] SEO C W, KIM S H, JO S K, et al. Modification and minimization of spinel(Al2O3·xMgO) inclusions formed in Ti-added steel melts[J]. Metallurgical and Materials Transactions B, 2010, 41(4):790-797.
[55] 朱青德,魏国立. 硅铝铁脱氧生产70#钢中夹杂物研究[J]. 甘肃冶金, 2018,40(3):11-16. ZHU Q D, WEI G L. Si-Al-Fe deoxidation produce 70# steel study on inclusions[J].Gansu Metallurgy, 2018,40(3):11-16.
[56] LI W, LIANG H, CHEN J, et al. Effect of SiC particles on fatigue crack growth behavior of SiC particulate-reinforced Al-Si alloy composites produced by spray forming[J]. Procedia Materials Science, 2014, 3:1694-1699.
[57] WANG J, ZHANG Y, LIU S, et al. Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J]. International Journal of Fatigue, 2016, 87:203-209.
[58] SUN C, LEI Z, XIE J, et al. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure[J]. International Journal of Fatigue, 2013, 48:19-27.
[59] NAKAMURA T, OGUMA H, SHINOHARA Y. The effect of vacuum-like environment inside sub-surface fatigue crack on the formation of ODA fracture surface in high strength steel[J]. Procedia Engineering, 2010, 2(1):2121-2129.
[60] YAMASHITA Y, MURAKAMI Y. Small crack growth model from low to very high cycle fatigue regime for internal fatigue failure of high strength steel[J]. International Journal of Fatigue, 2016, 93:406-414.
[61] MURAKAMI Y. Chapter 6-effects of nonmetallic inclusions on fatigue strength[M]//Metal Fatigue.Amsterdam:Elsevier,2002:75-127.
[62] FURUYA Y, ABE T, MATSUOKA S. Inclusion-controlled fatigue properties of 1800 MPa-class spring steels[J]. Metallurgical and Materials Transactions A, 2004, 35(12):3737-3744.
[63] LIU Y B, LI S X, LI Y D, et al. Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime[J]. Materials Science and Engineering:A, 2011, 528(3):935-942.
[64] ZHOU C, ZHANG Y J, HUI W J,et al. Influence of hydrogen on GBF in very high cycle fatigue of high strength steel[J]. Journal of Iron and Steel Research,International,2013,20(12):92-97.
[65] LI W, GAO N, ZHAO H Q, et al. Crack initiation and early growth behavior of TC4 titanium alloy under high cycle fatigue and very high cycle fatigue[J]. Journal of Materials Research, 2018,33:1-11.
[66] LIU Y B, YANG Z G, LI Y D, et al. Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime[J]. Materials Science and Engineering:A, 2009, 517(1):180-184.
[67] ZHAO P, LIU Z, MISRA R D K, et al. Non-inclusion induced crack initiation in multiphase high-strength steel during very high cycle fatigue[J]. Materials Science and Engineering:A, 2017, 712:406-413.
[68] YANG Z G, LI S X, LI Y D, et al. Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime[J]. Materials Science and Engineering:A, 2010, 527(3):559-564.
[69] MURAKAMI Y, NOMOTO T, UEDA T. Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7):1879-1892.
[70] SHIOZAWA K, LU L, ISHIHARA S. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(12):781-790.
[71] SAKAI T, LIAN B, TAKEDA M, et al. Statistical duplex-characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime[J]. International Journal of Fatigue, 2010, 32(3):497-504.
[72] GRAD P, REUSCHER B, BRODYANSKI A, et al. Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels[J]. Scripta Materialia, 2012, 67(10):838-841.
[73] TSUKADA K, HAYASHI M, NAKAMURA Y, et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures[J]. IEEE Transactions on Magnetics, 2018,54(11):6202205.
[74] LI J, SU H, CHAI F, et al. Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil[J]. Journal of Iron and Steel Research,International, 2018, 25(7):755-766.
[75] ABDESSELAM H, CREPIN J, PINEAU A, et al. On the crystallographic, stage Ⅰ-like, character of fine granular area formation in internal fish-eye fatigue cracks[J]. International Journal of Fatigue, 2018,106:132-142.
[76] SPRIESTERSBACH D, BRODYANSKI A, LÖSCH J, et al. Very high cycle fatigue of bearing steels with artificial defects in vacuum[J]. Materials Science and Technology, 2016,32(11):1111-1118.
[77] NEHILA A, LI W, GAO N, et al. Very high cycle fatigue of surface carburized CrNi steel at variable stress ratio:failure analysis and life prediction[J]. International Journal of Fatigue, 2018, 111:112-123.
[1] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[2] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[3] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[4] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[5] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[6] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[7] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[8] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[9] 樊俊铃, 郭强, 赵延广, 郭杏林. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8): 62-71.
[10] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[11] 刘培生, 马晓明. 高孔率泡沫金属材料疲劳表征模型及其实验研究[J]. 材料工程, 2012, 0(5): 47-53.
[12] 王欣, 高玉魁, 王强, 宋颖刚, 陆峰. 再次喷丸周期对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2012, 0(2): 67-71.
[13] 孟杰, 金涛. 镍基单晶高温合金的再结晶[J]. 材料工程, 2011, 0(6): 92-98.
[14] 宫玉辉, 刘铭, 张坤, 黄敏, 伊琳娜, 戴圣龙. 不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J]. 材料工程, 2010, 0(9): 71-73.
[15] 吴开明, 周珍妮, 张国宏, 张晶晶. 强磁场对铁基合金中奥氏体分解的影响[J]. 材料工程, 2010, 0(6): 84-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn