Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 34-39    DOI: 10.11868/j.issn.1001-4381.2019.000299
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能
侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文
华北理工大学 材料科学与工程学院 河北省无机非金属材料重点实验室, 河北 唐山 063210
Preparation and properties of bio-based gallic epoxy resin/nano-ZnO antibacterial coating
HOU Gui-xiang, XIE Jian-qiang, YAO Shao-wei, ZHANG Yun-jie, LAN Wen
Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(2137 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以没食子酸为主要原料制备生物基没食子酸环氧树脂(GAER),将硅烷偶联剂KH550表面改性的纳米ZnO与GAER进行复合,以丁二酸酐为固化剂,制备KH550-nano-ZnO/GAER生物基复合涂层。对纳米ZnO改性前后微观结构的变化进行表征;采用示差扫描量热仪对丁二酸酐/GAER体系的固化过程进行研究,测试KH550-nano-ZnO的加入对GAER固化膜力学性能、热性能、动态力学性能以及抗菌性能的影响。结果表明:适量KH550-nano-ZnO的加入,可以增加GAER固化体系的玻璃化温度,提高涂层表面的抗冲击性,KH550-nano-ZnO含量的增加使得涂层的硬度增加,附着力下降,热稳定性增加。复合涂层的起始热失重温度(T5%)比纯GAER高12.6~15.4℃。当KH550-nano-ZnO含量为2%(质量分数)时,玻璃化转变温度与纯GAER树脂相比增加了30.7℃。KH550-nano-ZnO/GAER固化涂膜对大肠杆菌和金黄色葡萄球菌的抗菌率均达到99.99%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯桂香
谢建强
姚少巍
张云杰
蓝文
关键词 没食子酸纳米氧化锌生物基环氧树脂涂层抗菌性    
Abstract:Bio-based gallic acid epoxy resin(GAER)was prepared by gallic acid as main raw material. Nano-ZnO surface modification by KH-550 was used to prepare KH550-nano-ZnO. In addition, it was combined with the bio gallic acid epoxy resin(GAER), GAER/KH550-nano-ZnO composite coating was prepared by using succinic anhydride as curing agent. The changes of microstructure before and after modification of nano-ZnO were characterized. The curing process of succinic anhydride/GAER system was studied by differential scanning calorimeter. The effects of the KH550-nano-ZnO content on the mechanical properties, the thermal properties, dynamic mechanical properties and the antibacterial properties of the coating film were tested. The results show that the addition of proper amount of KH550-nano-ZnO can increase the glass transition temperature (Tg) of the system and improve the impact resistance of coating surface. The hardness and thermal stability of the coating are increased and the adhesion is decreased with the increased content of KH550-nano-ZnO. The initial thermal decomposition temperature (T5%) of the composite coating is higher 12.6-15.4℃ than that of pure GAER. When the content of KH550-nano-ZnO is 2%(mass fraction), the Tg is increased by 30.7℃ compared with pure GAER resin. The anti-bacterial rate of the KH550-nano-ZnO/GAER cured coating to Escherichia coli and Staphylococcus aureus reaches 99.99%.
Key wordsgallic acid    nano-zinc oxide    bio-based epoxy resin    coating    antibacterial property
收稿日期: 2019-04-01      出版日期: 2020-03-18
中图分类号:  TQ322.4+1  
通讯作者: 侯桂香(1981-),女,副教授,博士,主要从事聚合物改性方面研究,联系地址:河北省唐山市曹妃甸区新城渤海大道21号华北理工大学材料科学与工程学院(063210),E-mail:hougx@ncst.edu.cn     E-mail: hougx@ncst.edu.cn
引用本文:   
侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
HOU Gui-xiang, XIE Jian-qiang, YAO Shao-wei, ZHANG Yun-jie, LAN Wen. Preparation and properties of bio-based gallic epoxy resin/nano-ZnO antibacterial coating. Journal of Materials Engineering, 2020, 48(3): 34-39.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000299      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/34
[1] 张雅丽,李建科,刘柳,等. 五倍子没食子酸研究进展[J]. 食品工业科技,2013, 34(10):386-390. ZHANG Y L,LI J K, LIU L, et al. Research progress in gallic acid from Galla Chinensis[J]. Science and Technology of Food Industry, 2013, 34(10):386-390.
[2] AOUF C, NOUAILHAS H, FACHE M, et al. Multi-functionalization of gallic acid:synthesis of a novel bio-based epoxy resin[J]. European Polymer Journal, 2013, 49(6):1185-1195.
[3] PATIL D M, PHALAK G A, MHASKE S T. Synthesis of bio-based epoxy resin from gallic acid with various epoxy equivalent weights and its effects on coating properties[J]. Journal of Coatings Technology and Research, 2017, 14(2):355-365.
[4] TARZIA A, MONTANARO J, CASIELLO M, et al. Synthesis, curing, and properties of an epoxy resin derived from gallic acid[J]. Bio-Resources, 2017, 13(1):632-645.
[5] ESPITIA P J P, SOARES N F F, COIMBRA J S, et al. Zinc oxide nanoparticles:synthesis, antimicrobial activity and food packaging applications[J]. Food and Bioprocess Technology, 2012, 5(5):1447-1464.
[6] 陈枭,石倩,杨乐,等. 纳米氧化锌表面修饰及其应用研究进展[J]. 化工进展, 2018, 37(2):621-627. CHEN X, SHI Q, YANG L, et al. Research progress in surface-modification and applications of nano zinc oxide[J]. Chemical Industry and Engineering Progress, 2018, 37(2):621-627.
[7] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles:antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3):219-242.
[8] MA J, ZHU W, TIAN Y, et al. Preparation of zinc oxide-starch nanocomposite and its application on coating[J]. Nanoscale Research Letters, 2016, 11(1):200.
[9] MIZIELINSKA M, KOWALSKA U, JAROSZ M, et al. The effect of UV aging on antimicrobial and mechanical properties of PLA films with incorporated zinc oxide nanoparticles[J]. International Journal of Environmental Research and Public Health, 2018, 15(4):794.
[10] JI P,WANG C,JIANG Z,et al. Influence of surface modification of zinc oxide nanoparticles on thermal behavior and hydrophilic property of PET-PEG composites[J]. Polymer Composites,2016,37(6):1830-1838.
[11] 左银泽,陈亮,朱斌,等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5):22-28. ZUO Y Z, CHEN L, ZHU B, et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites[J]. Journal of Materials Engineering, 2018, 46(5):22-28.
[12] RYU B Y, EMRICK T. Bisphenol-1, 2, 3-triazole (BPT) epoxies and cyanate esters:synthesis and self-catalyzed curing[J]. Macromolecules, 2011, 44(14):5693-5700.
[13] 侯桂香,谢建强,李婷婷,等. 生物基没食子酸环氧树脂/氧化石墨烯纳米复合材料的制备及热性能[J]. 高分子材料科学与工程, 2016, 32(7):159-163. HOU G X, XIE J Q,LI T T, et al. Preparation and thermal properties of bio-based gallic epoxy resin/graphene oxide composites[J]. Polymer Materials Science and Engineering, 2016, 32(7):159-163.
[14] MA Z G, GAO J G. Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine[J]. J Phys Chem:B, 2006,110:12380-12383.
[15] 周茗萱,李文翔,高念,等. 纳米氧化锌改性环氧树脂的性能研究[J]. 粘接, 2017, 38(11):28-31. ZHOU M X, LI W X, GAO N, et al. Properties of epoxy resin modified with nano-ZnO[J]. Adhesion, 2017, 38(11):28-31.
[1] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[4] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[5] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[6] 杜娟, 魏子明, 郑世辑, 陈亚军, 胡雪兰, 汪睿. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48(2): 22-31.
[7] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[8] 周莉, 柳汀, 郑典亮, 许勇刚. 选择表面工艺改性的CIPs涂层及其氧化物的吸波性能[J]. 材料工程, 2019, 47(9): 132-138.
[9] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[10] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[11] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[12] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[13] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[14] 赵海朝, 梁秀兵, 乔玉林, 柳建, 张志彬, 仝永刚. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
[15] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn