Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 1-9    DOI: 10.11868/j.issn.1001-4381.2019.000308
  综述 本期目录 | 过刊浏览 | 高级检索 |
开孔型聚合物发泡材料的研究及应用进展
陈振1, 张增志1,2, 丛中卉1, 王立宁1, 吴浩平1
1. 中国矿业大学(北京) 机电与信息工程学院, 北京 100083;
2. 中国矿业大学(北京) 生态功能材料研究所, 北京 100083
Research and application progress of open-cell polymeric foams
CHEN Zhen1, ZHANG Zeng-zhi1,2, CONG Zhong-hui1, WANG Li-ning1, WU Hao-ping1
1. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Research Institute of Ecological and FunctionalMaterial, China University of Mining and Technology(Beijing), Beijing 100083, China
全文: PDF(2029 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 聚合物泡沫塑料以其优异的性能成为人们生活中必不可少的物品。开孔型聚合物发泡材料因独特的三维骨架形态被广泛应用于吸音材料、生物医药材料、光学材料和导电材料等领域。特别是聚合物纳米复合材料,为现代医学生产抗菌治疗、组织工程、癌症治疗、医学成像、牙科应用、药物传递等产品提供了新的机遇。本文综述了开孔发泡材料的制备方法、发泡机理及其应用领域,以及最近几年开孔发泡材料新的发展。最后,对材料制备和应用过程中存在的主要问题进行总结并对未来采用聚合物共混、形成微纳米复合材料、涂覆高阻隔材料和聚合物改性等手段制备高性能开孔聚合物发泡材料的发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈振
张增志
丛中卉
王立宁
吴浩平
关键词 聚合物发泡材料开孔型纳米复合材料发泡机理制备方法    
Abstract:Polymeric foams have become essential items due to their excellent properties. Open-cell foams are widely used in the fields of sound-absorbing, biomedicine, optics, conduction, etc. In particular, polymer nanocomposites offer modern medicine new opportunities for generating products for antibacterial treatment, tissues engineering, cancer therapy, medical imaging, dental applications and drug delivery, etc. In this paper, the preparation methods, foaming mechanism and application fields of open-cell foams were described, as well as new developments in recent years. Finally, the main problems in the process of material preparation and application were summarized and the future development trend of polymer blending, formation of micro-nano composites, coating of high-barrier materials and polymer modification for the preparation of high-performance open-cell polymer foams was forecasted.
Key wordspolymeric foam    open-cell    nanocomposite    foaming mechanism    preparation method
收稿日期: 2019-04-03      出版日期: 2020-03-18
中图分类号:  TQ325  
通讯作者: 张增志(1965-),男,教授,博士,主要从事生态功能材料的研究与开发,联系地址:北京市海淀区学院路丁11号中国矿业大学(北京)生态功能材料研究所(100083),E-mail:z.zengzhi@163.com     E-mail: z.zengzhi@163.com
引用本文:   
陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
CHEN Zhen, ZHANG Zeng-zhi, CONG Zhong-hui, WANG Li-ning, WU Hao-ping. Research and application progress of open-cell polymeric foams. Journal of Materials Engineering, 2020, 48(3): 1-9.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000308      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/1
[1] LI Y, PEI X L, SHEN B, et al. Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding[J]. RSC Advances, 2015, 5(31):24342-24351.
[2] 赵静静,张晓黎,王喜焕,等. 微孔发泡聚合物基导电复合材料的研究进展[J]. 高分子通报, 2017(3):33-41. ZHAO J J, ZHANG X L, WANG X H, et al. Research progress of microcellular foamed polymer-based conductive composites[J]. Polymer Bulletin, 2017(3):33-41.
[3] NOFAR M, AMELI A, PARK C B. Development of polylactide bead foams with double crystal melting peaks[J]. Polymer, 2015, 69(1):83-94.
[4] LEE S T, PARK C B, RAMESH N S. Polymeric foams:science and technology[M]. Boca Raton,FL:CRC Press, 2006.
[5] LEE S T, PARK C B. Foam extrusion:principles and practice[M]. Boca Raton,FL:CRC Press, 2000.
[6] DAWSON R, COOPER A I, ADAMS D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2011, 37(4):530-563.
[7] CHEN S C, LIAO W H, CHIEN R D. Structure and mechanical properties of polystyrene foams made through microcellular injection molding via control mechanisms of gas counter pressure and mold temperature[J]. International Communications in Heat & Mass Transfer, 2012, 39(8):1125-1131.
[8] SIRIPURAPU S, GAY Y J, ROYER J R, et al. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process[J]. Polymer, 2002, 43(20):5511-5520.
[9] KUANG T, CHEN F, CHANG L, et al. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications[J]. Chemical Engineering Journal, 2017, 307:1017-1025.
[10] AGHELINEJAD M, LEUNG S N. Fabrication of open-cell thermoelectric polymer nanocomposites by template-assisted multi-walled carbon nanotubes coating[J]. Composites:Part B, 2018, 145:100-107.
[11] 张智嘉,韩晓军. 抗菌聚合物的研究进展[J]. 高分子通报, 2018(3):1-11. ZHANG Z J, HAN X J. Recent progress of antibacterial polymers[J]. Polymer Bulletin, 2018(3):1-11.
[12] 郑辉东,邱洪峰,郑玉婴,等. 负载纳米银EVA复合发泡材料的制备及其抗菌性能[J]. 材料工程, 2016, 44(7):107-112. ZHENG H D, QIU H F, ZHENG Y Y, et al. Preparation and antibacterial property of EVA composite foams supported by nano-silver[J]. Journal of Materials Engineering, 2016, 44(7):107-112.
[13] 花兴艳,王源升,赵培仲,等. 聚氨酯/环氧树脂互穿聚合物网络半硬泡沫的结构与性能[J]. 材料工程, 2009(10):32-35. HUA X Y, WANG Y S, ZHAO P Z, et al. Properties and structure of semirigid PU/ER interpenetrating polymer networks foams[J]. Journal of Materials Engineering, 2009(10):32-35.
[14] MOSANENZADEH S G, PARK C B, ATALLA N, et al. Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption[J]. Journal of Applied Polymer Science, 2014, 131(7):2113-2124.
[15] GHASEM N, AL-MARZOUQI M. Effect of polymer extrusion temperature on poly(vinylidene fluoride) hollow fiber membranes:properties and performance used as gas-liquid membrane contactor for CO2 absorption[J]. Separation and Purification Technology, 2012, 99:91-103.
[16] SHEN X, ZHAO Y, CHEN L, et al. Structure and performance of temperature-sensitive poly(vinylidene fluoride) hollow fiber membrane fabricated at different take-up speeds[J]. Polymer Engineering & Science, 2013, 53(3):571-579.
[17] GONG P J, TANIGUCHI T, OHSHIMA M. Nanoporous structure of the cell walls of polycarbonate foams[J]. Journal of Materials Science, 2014, 49(6):2605-2617.
[18] CARTER K R, DIPIETRO R A, SANCHEZ M I, et al. Nanoporous polyimides derived from highly fluorinated polyimide/poly(propylene oxide) copolymers[J]. Chemistry of Materials, 2016, 13(1):213-221.
[19] GUO G, MA Q, ZHAO B, et al. Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams[J]. Ultrasonics Sonochemistry, 2013, 20(1):137-143.
[20] GANDHI A, ASIJA N, GAUR K K, et al. Ultrasound assisted cyclic solid-state foaming for fabricating ultra-low density porous acrylonitrile-butadiene-styrene foams[J]. Materials Letters, 2013, 94:76-78.
[21] 何跃,蒋团辉,刘阳夫,等. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2):80-87. HE Y, JIANG T H, LIU Y F, et al. Influence of rubber powders on foaming behavior and mechanical properties of foamed polypropylene composites[J]. Journal of Materials Engineering, 2017, 45(2):80-87.
[22] DERRICK T. Processing and analysis of microcellular open-cell foams[D]. Massachusetts:Massachusetts Institute of Technology, 1994.
[23] 王舒生,王坤,庞永艳,等. 聚丙烯/线型低密度聚乙烯开孔泡沫的制备及吸油性能[J]. 高分子材料科学与工程, 2016, 32(12):133-138. WANG S S, WANG K, PANG Y Y, et al. Preparation of open-cell polypropylene/linear low density polyethylene blend foams and the oil sorption performance[J]. Polymer Materials Science & Engineering, 2016, 32(12):133-138.
[24] YU P, MI H Y, HUANG A, et al. Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior:formation of open cell structure[J]. Industrial & Engineering Chemistry Research, 2015, 54(23):6199-6207.
[25] LEE J K, HAN C D. Evolution of polymer blend morphology during compounding in an internal mixer[J].Polymer, 1999, 40(23):6277-6296.
[26] RAVATI S, FAVIS B D. Morphological states for a ternary polymer blend demonstrating complete wetting[J]. Polymer, 2010, 51(20):4547-4561.
[27] KONG W L, BAO J B, WANG J, et al. Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends[J]. Polymer, 2016, 90:331-341.
[28] ABETZ V, SIMON P F W. Phase behaviour and morphologies of block copolymers[M]. Berlin, Heidelberg:Springer, 2005.
[29] MACOSKO C W, JEON H K, HOYE T R. Reactions at polymer-polymer interfaces for blend compatibilization[J]. Progress in Polymer Science, 2005, 30(8):939-947.
[30] SHINKAI T, ITO M, SUGIYAMA K, et al. Ordered and foam structures of semifluorinated block copolymers in supercritical carbon dioxide[J]. Soft Matter, 2012, 8(21):5811-5817.
[31] ZHANG R, YOKOYAMA H. Fabrication of nanoporous structures in block copolymer using selective solvent assisted with compressed carbon dioxide[J]. Macromolecules, 2009, 42(10):3559-3564.
[32] SCHULZE M, HANDGE U A, ABETZ V. Preparation and characterisation of open-celled foams using polystyrene-b-poly(4-vinylpyridine) and poly(4-methylstyrene)-b-poly(4-vinylpyridine) diblock copolymers[J]. Polymer, 2017, 108:400-412.
[33] WANG X X, LI W, KUMAR V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications[J]. Biomaterials, 2006, 27(9):1924-1929.
[34] AURELIO S, SALVATORE I, NETTI P A. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating[J]. Macromolecular Bioscience, 2010, 8(7):655-664.
[35] SABOURIAN P, FROUNCHI M, DADBIN S. Polyvinyl alcohol and polyvinyl alcohol/polyvinyl pyrrolidone biomedical foams crosslinked by gamma irradiation[J]. Journal of Cellular Plastics, 2017, 53(4):359-372.
[36] GONG P, OHSHIMA M. Open-cell foams of polyethylene terephthalate/bisphenol a polycarbonate blend[J]. Polymer Engineering & Science, 2015, 55(2):375-385.
[37] WU W, CAO X W, LIN H, et al. Preparation of biodegradable poly(butylene succinate)/halloysite nanotube nanocomposite foams using supercritical CO2 as blowing agent[J]. Springer Netherlands, 2015, 22(9):177-187.
[38] HARIKRISHNAN G, PATRO T U, KHAKHAR D V. Polyurethane foam-clay nanocomposites:nanoclays as cell openers[J]. Industrial & Engineering Chemistry Research, 2006, 45(21):7126-7134.
[39] RODEHEAVER B A,COLTON J S. Open-celled microcellular thermoplastic foam[J]. Polymer Engineering and Science, 2001, 41(3):380-400.
[40] COLTON J S, SUH N P. Nucleation of microcellular foam:theory and practice[J]. Polymer Engineering & Science, 1987, 27(7):500-503.
[41] ENAYATI M, FAMILI M H N, JANANI H. Open-celled microcellular foaming and the formation of cellular structure by a theoretical pattern in polystyrene[J]. Iranian Polymer Journal, 2013, 22(6):417-428.
[42] HOANG M T, BONNET G, LUU H T et al. Linear elastic properties derivation from microstructures representative of transport parameters[J]. Journal of the Acoustical Society of America, 2014, 135(6):3172-3185.
[43] SAGARTZAZU X, HERVELLA-NIETO L, PAGALDAY J M. Review in sound absorbing materials[J]. Archives of Computational Methods in Engineering, 2008, 15(3):311-342.
[44] PARK J H, YANG S H, LEE H R, et al. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling[J]. Journal of Sound and Vibration, 2017, 397:17-30.
[45] JU H P, MINN K S, LEE H R, et al. Cell openness manipulation of low density polyurethane foam for efficient sound absorption[J]. Journal of Sound & Vibration, 2017, 406:224-236.
[46] SUNG G, KIM J W, KIM J H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption[J]. Journal of Industrial and Engineering Chemistry, 2016, 44:99-104.
[47] PARK J, YANG S H, MINN K S, et al. Design and numerical analysis of syntactic hybrid foam for superiorsound absorption[J]. Materials & Design, 2018, 142:212-220.
[48] WEI Q F, MATHER R R, FOTHERINGHAM A F, et al. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery[J]. Marine Pollution Bulletin, 2003, 46(6):780-783.
[49] WANG S S, WANG K, PANG Y Y, et al. Open-cell polypropylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials[J]. Journal of Applied Polymer Science, 2016, 133(33):43812-43822.
[50] ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China[J]. Environment International, 2016, 92:11-22.
[51] DORRAJI M S S, ASHJARI H R, RASOULIFARD M H, et al. Polyurethane foam-cadmium sulfide nanocomposite with open cell structure:dye removal and antibacterial applications[J]. Korean Journal of Chemical Engineering, 2017, 34(2):547-554.
[52] DEHGHANI Z, NADAFAN M, MALEKFAR R, et al. Measurement of third order nonlinear optical susceptibility of polyurethane-containing silica nanocomposites by Z-scan method[J]. Inorganic and Nano-Metal Chemistry, 2017, 47(9):1342-1347.
[53] STIPNIECE L, NARKEVICA I, SOKOLOVA M, et al. Novel scaffolds based on hydroxyapatite/poly(vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering[J]. Ceramic International, 2016, 42(1):1530-1537.
[54] JING X, MI H Y, TURNG L S. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming[J]. Materials Science & Engineering:C, 2017, 72:53-61.
[55] JEDDI J, KATBAB A A. The electrical conductivity and EMI shielding properties of polyurethane foam/silicone rubber/carbon black/nanographite hybrid composites[J]. Polymer Composites, 2018, 39(10):3452-3460.
[56] FELDMAN D. Polymer nanocomposites in medicine[J]. Journal of Macromolecular Science:Part A, 2016, 53(1):55-62.
[57] IVANOVIC J, REZWAN K, KROLL S. Supercritical CO2 deposition and foaming process for fabrication of biopolyester-ZnO bone scaffolds[J]. Journal of Applied Polymer Science, 2018, 135(7):1-11.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[4] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[5] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[6] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[7] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[8] 王飞, 贾书海, 唐振华, 汪永林. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4): 12-22.
[9] 崔贺帅, 郑彧, 刘杏娥, 杨淑敏, 田根林, 马建锋. 生物质基SiC陶瓷制备的研究进展[J]. 材料工程, 2017, 45(8): 115-122.
[10] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[11] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[12] 胡圣飞, 魏文闵, 刘清亭, 张荣. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3): 28-34.
[13] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[14] 孙爱娟, 方芬. 磁性纳米流体及其终端技术应用[J]. 材料工程, 2015, 43(9): 103-112.
[15] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn