Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 79-86    DOI: 10.11868/j.issn.1001-4381.2019.000332
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
拉应力下碳纳米管增强高分子基复合材料的应力分布
杨斌1, 李云龙2, 王世杰1, 聂瑞1, 王照智1
1. 沈阳工业大学 机械工程学院, 沈阳 110870;
2. 汕头大学 工学院, 广东 汕头 515063
Stress distribution of carbon nanotube reinforced polymer matrix composites under tensile stress
YANG Bin1, LI Yun-long2, WANG Shi-jie1, NIE Rui1, WANG Zhao-zhi1
1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. College of Engineering, Shantou University, Shantou 515063, Guangdong, China
全文: PDF(2916 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用基于剪切滞后模型的数值计算和有限元仿真结合的研究方法,通过构建由碳纳米管增强的高分子复合材料的圆柱形代表性体积元模型,分析在一定拉伸应力下不同碳纳米管的层数、长径比、含量以及环氧树脂、尼龙和聚甲基丙烯酸甲酯3种基体材料对碳纳米管内各层应力分布的影响。结果表明:在一定的拉伸应力下,层数和长径比对碳纳米管中各层的应力分布影响很大。碳纳米管的饱和应力值随着层数增加而减小,其值与层数存在一定的相关性,在对碳纳米管本身性能的利用率上,单壁碳纳米管表现最好;长径比的增大能有效提升碳纳米管的有效长度;随着碳纳米管含量的减少,其饱和应力值明显增大,有效长度不断减小;不同的高分子基体材料对碳纳米管的应力分布影响并不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨斌
李云龙
王世杰
聂瑞
王照智
关键词 碳纳米管高分子基体应力分布剪切滞后模型有限元法    
Abstract:A cylindrical representative volume element model of polymer nano-composites reinforced by carbon nanotubes under a fixed tension stress was developed. The stress distribution in each layer of carbon nanotubes was numerically studied through developing a shear lag model. Finite element analysis was adopted to validate the results obtained by shear lag analysis. The effects of layer numbers, aspect ratio, content of carbon nanotubes and three kinds of matrix materials of epoxy resin, nylon and polymethyl methacrylate on the stress distribution in each layer of carbon nanotubes were analyzed. The results show that the stress distribution in graphene sheets of carbon nanotubes is significant influenced by layer numbers and the aspect ratio of carbon nanotubes under a fixed tension stress. The saturation stress of carbon nanotubes is decreased with the increase of the layer numbers and the value correlated with the number of layers. Single-walled carbon nanotubes are observed to perform the best utilization of its properties. It is found that the effective length is increased with the increase of the aspect ratio of carbon nanotubes. Significant increase of the saturation stress and decrease of the effective length of carbon nanotubes are observed respectively with the decrease of the content of carbon nanotubes. It is also indicated that different polymer matrix materials play little effect on the stress distribution in carbon nanotubes.
Key wordscarbon nanotube    polymer matrix    stress distribution    shear-lag model    finite element met-hod
收稿日期: 2019-04-08      出版日期: 2020-03-03
中图分类号:  TB324  
  TB332  
通讯作者: 王世杰(1964-),男,教授,博士,博士生导师,主要从事橡胶及高分子复合材料的力学性能、摩擦学性能、老化性能的研究,E-mail:wang_shijie126@126.com     E-mail: wang_shijie126@126.com
引用本文:   
杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
YANG Bin, LI Yun-long, WANG Shi-jie, NIE Rui, WANG Zhao-zhi. Stress distribution of carbon nanotube reinforced polymer matrix composites under tensile stress. Journal of Materials Engineering, 2020, 48(2): 79-86.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000332      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/79
[1] JACKSON E M, LAIBINIS P E, COLLINS W E, et al. Development and thermal properties of carbon nanotube-polymer composites[J]. Composites: Part B, 2016, 89: 362-373.
[2] 曾少华,申明霞,段鹏鹏,等.碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J].材料工程,2017,45(9):38-44. ZENG S H, SHEN M X, DUAN P P, et al. Structure and property of carbon nanotubes attached glass fabric reinforced epoxy composites[J]. Journal of Materials Engineering, 2017,45(9):38-44.
[3] TSAI J L, LU T C. Investigating the load transfer efficiency in carbon nanotubes reinforced nano-composites[J]. Composite Structures, 2009, 90(2): 172-179.
[4] 胡芳芳,聂小安.碳纳米管增强环氧树脂基复合材料研究进展[J].热固性树脂,2019, 34(1):60-65. HU F F, NIE X A. Research progress on carbon nanotubes reinforced epoxy composites[J]. Thermosetting Resin, 2019,34(1):60-65.
[5] LI Y, WANG S, HE E, et al. The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites[J]. Carbon, 2016, 106:106-109.
[6] 王程成,贺德龙,崔溢.结构-导电复合材料研究进展[J].材料工程,2018,46(9):1-13. WANG C C, HE D L, CUI Y. Research progress in electrically conductive structural composites[J]. Journal of Materials Engineering, 2018,46(9):1-13.
[7] RAFIEE R, MOGHADAM R M. On the modeling of carbon nanotubes: a critical review[J]. Composites: Part B, 2014, 56: 435-449.
[8] 何才启,张俊乾.碳纳米管复合材料的应力分析[J].复合材料学报,2008,25(5):120-124. HE C Q, ZHANG J Q. Stress analysis of carbon nanotubes reinforced composites[J].Acta Materiae Compositae Sinica, 2008,25(5):120-124.
[9] ZALAMEA L, KIM H, PIPES R B. Stress transfer in multi-walled carbon nanotubes[J]. Composites Science & Technology, 2007, 67(15):3425-3433.
[10] VIET N V, KUO W S. Shear transfer in fractured carbon nanotubes under torsion[J]. Materials Science and Engineering: A, 2012, 536: 256-264.
[11] GAO X L, LI K. A shear-lag model for carbon nanotube-reinforced polymer composites[J]. International Journal of Solids and Structures, 2005,42(5/6):1649-1667.
[12] SPANOS K N, GEORGANTZINOS S K, ANIFANTIS N K. Investigation of stress transfer in carbon nanotube reinforced composites using a multi-scale finite element approach[J]. Composites: Part B,2014, 63: 85-93.
[13] VIET N V, WANG Q, KUO W S. A studying on load transfer in carbon nanotube/epoxy composites under tension[J]. Journal of Modeling in Mechanics & Materials, 2017, 1(1):20160153.
[14] 高江姗,何燕,徐瑾,等.碳纳米管/炭黑协同效应对天然橡胶/顺丁橡胶复合材料性能的影响[J].材料研究学报,2017,31(10):758-764. GAO J S, HE Y, XU J, et al. Influence of synergistic effect of carbon nanotubes/carbon black on properties of natural rubber/butadiene rubber composites[J]. Chinese Journal of Materials Research, 2017,31(10):758-764.
[15] 张勇. 碳纳米管-石墨烯混杂复合材料力学增强机理研究[D]. 哈尔滨:哈尔滨工业大学,2016. ZHANG Y. Study on molecular enhancement mechanisms of carbon nanotube-graphene hybrid reinforced composites [D]. Harbin: Harbin Institute of Technology, 2016.
[16] CHO J, LUO J J, DANIEL I M. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis[J]. Composites Science and Technology, 2007, 67(11/12): 2399-2407.
[17] ZHENG Q, LIU J Z, JIANG Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation[J]. Physical Review:B, 2002, 65(24): 245409.
[18] DOLLING G, BROCKHOUSE B N. Lattice vibrations in pyrolitic graphite[J]. Physical Review, 1962, 128(3):1120-1123.
[19] KASHYAP K T, PATIL R G. On Young’s modulus of multi-walled carbon nanotubes[J]. Bulletin of Materials Science, 2008, 31(2): 185-187.
[20] MARK J E. Polymer data handbook [M]. London: Oxford University Press, 1999.
[21] QIAN D, LIU W K, RUOFF R S. Load transfer mechanism in carbon nanotube ropes[J]. Composites Science and Technology, 2003, 63(11): 1561-1569.
[22] SHOKRIEH M M, RAFIEE R. Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites[J]. Composite Structures, 2010, 92(10): 2415-2420.
[1] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[2] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[3] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[4] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[5] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[6] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[7] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[8] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[9] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[10] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
[11] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[12] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[13] 韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
[14] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[15] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn