Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 131-139    DOI: 10.11868/j.issn.1001-4381.2019.000333
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能
张军, 刘崇宇
桂林理工大学 材料科学与工程学院, 广西 桂林 541004
Friction and wear property of CNT-SiC hybrid reinforced aluminum matrix composites prepared by powder metallurgy
ZHANG Jun, LIU Chong-yu
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(5553 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以7055Al为基体,通过粉末冶金法分别制备碳化硅(SiC)颗粒、碳纳米管(CNT)以及SiC和CNT混杂增强7055Al复合材料,并对三种复合材料的干滑动摩擦磨损行为进行研究。结果表明:随着载荷提高,复合材料磨损失重增加,摩擦因数略有降低。在0.5 MPa与1.0 MPa载荷条件下,SiC-CNT/7055Al复合材料磨损失重低于单一SiC/7055Al和单一CNT/7055Al复合材料。2.0 MPa时,SiC-CNT/7055Al复合材料磨损失重急剧增加。随着载荷提高,CNT/7055Al复合材料耐磨性逐渐增加,在中、高载荷下,材料具有更为优异的耐磨性。SiC/7055Al复合材料磨损量则随着载荷提高,磨损失重逐渐增加,当载荷为2.0 MPa时,材料磨损量增加幅度较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军
刘崇宇
关键词 粉末冶金混杂增强铝基复合材料干滑动摩擦磨损磨损机制    
Abstract:Silicon carbide (SiC) particles,carbon nanotubes (CNT), SiC and CNT hybrid reinforced 7055Al composites were prepared by powder metallurgy with 7055Al as matrix. The dry sliding friction and wear behavior of the three composites were studied. The results show that the wear mass loss increases and the friction coefficient decreases slightly with the increase of the load.The wear mass loss of the SiC-CNT/7055Al composite is lower than that of the single SiC/7055Al and CNT/7055Al reinforced composites at 0.5 MPa and 1.0 MPa.The wear mass loss of the SiC-CNT/7055Al composite increases rapidly at 2.0 MPa. With the increase of the load,the wear resistance of CNT/7055Al composite increases gradually;under medium and high load,the composite owns better wear resistance.The wear amount of SiC/7055Al composite increases gradually with the increase of the load, and the wear mass loss increases little at load of 2.0 MPa.
Key wordspowder metallurgy    hybrid reinforced aluminum matrix composite    dry sliding friction and wear    wear mechanism
收稿日期: 2019-04-10      出版日期: 2020-11-20
中图分类号:  TB331  
基金资助: 
通讯作者: 刘崇宇(1984-),男,副教授,博士,研究方向为铝合金与铝基复合材料,联系地址:广西壮族自治区桂林市七星区建干路12号桂林理工大学材料科学与工程学院(541004),E-mail:lcy261@glut.edu.cn     E-mail: lcy261@glut.edu.cn
引用本文:   
张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
ZHANG Jun, LIU Chong-yu. Friction and wear property of CNT-SiC hybrid reinforced aluminum matrix composites prepared by powder metallurgy. Journal of Materials Engineering, 2020, 48(11): 131-139.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000333      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/131
[1] 张允康,许晓静,罗勇,等.7075铝合金强化固溶T76处理后的拉伸与剥落腐蚀性能[J].稀有金属材料与工程,2012,41(增刊2):612-615. ZHANG Y K,XU X J,LUO Y,et al.Tensile property and exfoliation corrosion of 7075 aluminum alloy after enhanced-solid-solution and T76 aging treatment[J].Rare Metal Materials and Engineering,2012,41(Suppl 2):612-615.
[2] LIN L H,LIU Z Y,BAI S,et al.Effects of germanium on quench sensitivity in Al-Zn-Mg-Zr alloy[J].Materials & Design,2015,86:679-685.
[3] LIU S D,ZHANG X M,CHEN M A,et al.Influence of aging on quench sensitivity effect of 7055 aluminum alloy[J].Materials Characterization,2008,59(1):53-60.
[4] 陈军洲,戴圣龙,甄良.AA7055铝合金板材的微观组织与力学性能[J].航空材料学报,2017,37(5):7-14. CHEN J Z,DAI S L,ZHEN L.Microstructure and mechanical property of aluminum alloy plate AA7055[J].Journal of Aeronautical Materials,2017,37(5):7-14.
[5] MORTENSEN A,LLORCA J.Metal matrix composites[J].Annual Review of Materials Science,2010,40:243-270.
[6] CASATI R,VEDANI M.Metal matrix composites reinforced by nano-particles-a review[J].Metals,2014,4(1):65-83.
[7] 武高辉.金属基复合材料发展的挑战与机遇[J].复合材料学报,2014,31(5):1228-1237. WU G H.Development challenge and opportunity of metal matrix composites[J].Acta Materiae Compositae Sinica,2014,31(5):1228-1237.
[8] 李忠文,金慧玲,李士胜,等.混杂增强金属基复合材料的研究进展[J].中国材料进展,2016,35(9):694-700. LI Z W,JIN H L,LI S S,et al.Research and development of hybrid reinforced metal matrix composites[J].Materials China,2016,35(9):694-700.
[9] 李书志,王铁军,王玲.SiC颗粒增强铝基复合材料的研究进展[J].粉末冶金工业,2017,27(1):64-70. LI S Z,WANG T J,WANG L.Research progress of SiC particle reinforced aluminum matrix composites[J].Powder Metallurgy Industry,2017,27(1):64-70.
[10] 王行,谢敬佩,郝世明,等.碳化硅颗粒增强铝基复合材料研究现状与展望[J].稀有金属与硬质合金,2013,41(3):50-53. WANG H,XIE J P,HAO S M,et al.The latest development and prospect of SiC particle reinforced Al-based composite[J].Rare Metals and Cemented Carbides,2013,41(3):50-53.
[11] 赵敏,姜龙涛,武高辉.TiB2/Al复合材料制备工艺的研究进展[J].材料导报,2008,22(5):78-82. ZHAO M,JIANG L T,WU G H.Research progress in manufacturing process of TiB2/Al composites[J].Materials Review,2008,22(5):78-82.
[12] 徐亮,闫洪,王志伟,等.纳米Al2O3增强铝基复合材料磨损性能的研究[J].热加工工艺,2017,46(4):129-132. XU L,YAN H,WANG Z W,et al.Research on wear behavior of nano-Al2O3 reinforced aluminum matrix composite[J].Hot Working Technology,2017,46(4):129-132.
[13] 朱鹏飞,谢敬佩,王爱琴,等.粉末冶金法制备SiCp-Al复合材料的研究现状[J].粉末冶金工业,2016,26(5):48-56. ZHU P F,XIE J P,WANG A Q,et al.Research status of SiCp/Al composites prepared by powder metallurgy[J].Powder Metallurgy Industry,2016,26(5):48-56.
[14] WU R B,ZHOU K,YUE C Y,et al.Recent progress in synthesis,properties and potential applications of SiC nanomaterials[J].Progress in Materials Science,2015,72:1-60.
[15] SINGLA D,AMULYA K,MURTAZA Q.CNT reinforced aluminium matrix composite-a review[J].Materials Today:Proceedings,2015,2(4/5):2886-2895.
[16] 周生刚,徐阳,马双双,等.碳纳米管增强金属基复合材料研究综述[J].昆明理工大学学报(自然科学版),2017,42(4):14-19. ZHOU S G,XU Y,MA S S,et al.Research progress of CNTs reinforced metal matrix composites[J].Journal of Kunming University of Science and Technology (Natural Science Edition),2017,42(4):14-19.
[17] 郭鲤,蔡晓兰,李铮,等.高能球磨法制备高性能均一分散CNTs/Al5083复合材料[J].材料工程,2017,45(11):122-128. GUO L,CAI X L,LI Z,et al.CNTs/Al5083 composites of high-performance uniform and dispersion fabricated by high-energy ball-milling[J].Journal of Materials Engineering,2017,45(11):122-128.
[18] GUO B S,ZHANG X M,CEN X,et al.Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J].Materials Characterization,2018,136:272-280.
[19] LI S S,SU Y S,ZHU X H,et al.Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites[J].Materials & Design,2016,107:130-138.
[20] CARVALHO O,BUCIUMEANU M,MADEIRA S,et al.Dry sliding wear behaviour of AlSi-CNTs-SiCp hybrid composites[J].Tribology International,2015,90:148-156.
[21] YADAV B N,VERMA G,MUCHHALA D,et al.Effect of MWCNTs addition on the wear and compressive deformation behavior of LM13-SiC-MWCNTs hybrid composites[J].Tribology International,2018,128:21-33.
[22] 彭和思,丁雨田,王东强,等.粉末热挤压制备Mg2B2O5/6061Al复合材料的摩擦磨损性能研究[J].铸造技术,2016,37(6):1095-1099. PENG H S,DING Y T,WANG D Q,et al. Friction and wear behavior of Mg2B2O5/6061 Al composites prepared by powder hot extrusion process[J].Foundry Technology,2016,37(6):1095-1099.
[23] 叶赟,何国球,戴礼权,等.SiCp/A356铝基复合材料的磨损性能研究[J].材料导报,2017,31(1):60-63. YE Y,HE G Q,DAI L Q,et al.Wear performance of SiCp/A356 aluminum metal matrix composites[J].Materials Review,2017,31(1):60-63.
[24] AL-QUTUB A M,KHALIL A,SAHEB N,et al.Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes[J].Wear,2013,297:752-761.
[25] BASTWROS M M H,ESAWI A M K,WIFI A.Friction and wear behavior of Al-CNT composites[J].Wear,2013,307:164-173.
[26] MOSLEH-SHIRAZI S,AKHLAGHI F,LI D Y.Effect of SiC content on dry sliding wear,corrosion and corrosive wear of Al/SiC nanocomposites[J].Transactions of Nonferrous Metals Society of China,2016,26(7):1801-1808.
[27] KARAMI Ç M B, SARI F N,ERTURUN V.Friction and wear behaviors of reciprocatingly extruded Al-SiC composite[J].Journal of Materials Processing Technology,2012,212(12):2578-2585.
[28] RAO R N,DAS S,MONDAL D P,et al.Mechanism of material removal during tribological behaviour of aluminium matrix (Al-Zn-Mg-Cu) composites[J].Tribology International,2012,53:179-184.
[29] 湛永忠,张国定,蔡宏伟.颗粒增强金属基复合材料的干摩擦磨损性能与磨损机理[J].材料科学与工程学报,2003,21(5):748-752. ZHAN Y Z,ZHANG G D,CAI H W.Tribological properties and wear mechanisms of particulate reinforced metal matrix composites[J].Journal of Materials Science & Engineering,2003,21(5):748-752.
[1] 李明, 康永旺, 郭丰伟. 铌硅基超高温结构材料成形技术研究进展[J]. 材料工程, 2020, 48(11): 58-67.
[2] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[3] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[4] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[5] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[6] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[7] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[8] 杨唐, 刘炳, 文锋, 郭璐, 赵明露. Al2O3颗粒增强共晶铝锰基复合材料的腐蚀磨损性能[J]. 材料工程, 2013, 0(3): 83-89.
[9] 张家敏, 易健宏, 甘国友, 严继康, 杜景红, 刘意春. 烧结TiH2粉末制备钛合金的工艺及组织[J]. 材料工程, 2013, 0(10): 64-70.
[10] 马旭梁, 李莉, 朱成武, 王香, 郑玉峰. 多孔NiTi形状记忆合金的制备及性能[J]. 材料工程, 2011, 0(3): 6-10,59.
[11] 杨非, 孔凡涛, 陈玉勇, 肖树龙. TiAl合金板材的制备及研究现状[J]. 材料工程, 2010, 0(5): 96-100.
[12] 张振亚, 于化顺, 王少卿, 王海涛, 闵光辉. 快速凝固/粉末冶金法制备ZK60高强镁合金[J]. 材料工程, 2010, 0(5): 72-77.
[13] 顾玉丽, 何玉怀, 陶春虎, 郑飞, 张国栋. FGH96镍基高温合金的高温低周疲劳断裂机理研究[J]. 材料工程, 2009, 0(9): 56-60.
[14] 宋玉强, 李世春. 粉末烧结形成Al基金属间化合物的研究[J]. 材料工程, 2007, 0(4): 12-14,19.
[15] 蒋斌, 徐滨士, 董世运, 丁培道. n-Al2O3/Ni复合镀层的组织与滑动磨损性能研究[J]. 材料工程, 2002, 0(9): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn