Please wait a minute...
材料工程  2019, Vol. 47 Issue (11): 71-83    DOI: 10.11868/j.issn.1001-4381.2019.000346
  综述 本期目录 | 过刊浏览 | 高级检索 |
寻之玉1,2, 侯璞1,2, 刘旸1,2, 倪守朋1,2, 霍鹏飞1,2
1. 东北林业大学 生物质材料科学与技术教育部重点实验室, 哈尔滨 150040;
2. 东北林业大学 材料科学与工程学院, 哈尔滨 150040
Research progress of polymer electrolytes in supercapacitors
XUN Zhi-yu1,2, HOU Pu1,2, LIU Yang1,2, NI Shou-peng1,2, HUO Peng-fei1,2
1. Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China;
2. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
全文: PDF(5418 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 便携式电子器件迅速发展,安全性能更高的聚合物电解质受到广泛关注。本文介绍了近些年应用于超级电容器的各类聚合物电解质,包括全固态聚合物电解质、凝胶聚合物电解质、多孔聚合物电解质、复合聚合物电解质以及能够提供赝电容的氧化还原聚合物电解质,并详细讨论了上述聚合物电解质的特点和研究进展。提出了发展宽电压窗口、高离子导电型、高机械强度、质轻且薄的有机复合凝胶聚合物电解质会是超级电容器电解质领域未来的发展趋势;综合性能优异的聚合物电解质将会在超级电容器等新能源领域发挥重要作用。
E-mail Alert
关键词 超级电容器聚合物电解质离子传导率电化学性能    
Abstract:With the rapid development of portable devices, polymer electrolytes with high safety performance are receiving widespread attention. The polymer electrolytes applied in supercapacitors in recent years were introduced in this review, including all-solid-state polymer electrolytes, gel polymer electrolytes, porous polymer electrolytes, composite polymer electrolytes and redox polymer electrolytes capable of providing pseudocapacitance, and the characteristics and research progress were also discussed in details. It was proposed that the development of organic composite gel polymer electrolytes with wide voltage window, high ionic conductivity, high mechanical strength and light weight will be the trend in the field of electrolytes for supercapacitors in the future. Polymer electrolyte with excellent comprehensive performance will play an important role in the field of new energy resources such as supercapacitors.
Key wordssupercapacitor    polymer electrolyte    ionic conductivity    electrochemical performance
收稿日期: 2019-04-11      出版日期: 2019-11-21
中图分类号:  TB324  
通讯作者: 霍鹏飞(1987-),男,讲师,博士,研究方向为聚合物电解质及储能元件,联系地址:黑龙江省哈尔滨市香坊区和兴路26号东北林业大学工程楼902(150040),     E-mail:
寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
XUN Zhi-yu, HOU Pu, LIU Yang, NI Shou-peng, HUO Peng-fei. Research progress of polymer electrolytes in supercapacitors. Journal of Materials Engineering, 2019, 47(11): 71-83.
链接本文:      或
[1] HELMHOLTZ H V. Helmholtz's theory of double electric layers[J]. J Frankl Inst, 1883, 115(4):310.
[2] LI J, CHENG X, SHASHURIN A, et al. Review of electrochemical capacitors based on carbon nanotubes and graphene[J]. Graphene, 2012, 1(1):1-13.
[3] WU Z, LI L, YAN J, et al. Materials design and system construction for conventional and new-concept supercapacitors[J]. Advanced Science, 2017, 4(6):1600382.
[4] YANG P, MAI W. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8:274-290.
[5] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5):1597-1614.
[6] VANGARI M, PRYOR T, JIANG L. Supercapacitors:review of materials and fabrication methods[J]. Journal of Energy Engineering, 2012, 139(2):72-79.
[7] XIE K, QIN X, WANG X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3):347-352.
[8] PERRICONE E, CHAMAS M, LEPRETRE J C, et al. Safe and performant electrolytes for supercapacitor[J]. Journal of Power Sources, 2013, 239(1):217-224.
[9] ARYA A, SHARMA A L. Polymer electrolyte for lithium ion batteries:a critical study[J]. Ionics, 2017, 23(3):497-540.
[10] ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21):7484-7539.
[11] 吕晓静,朱平. 超级电容器聚合物电解质的研究进展[J]. 微纳电子技术, 2016, 53(2):102-107. LV X J, ZHU P. Research progress in polymer electrolytes for supercapacitor[J]. Micronanoelectronic Technology, 2016,53(2):102-107.
[12] ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21):7484-7539.
[13] BERTHIER C, GORECKI W, MINIER M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1):91-95.
[14] BAUME N, STEEL G, EDWARDS T, et al. No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen®) in cyclists[J]. European Journal of Applied Physiology, 2008, 104(4):589-600.
[15] NAKAYAMA M, WADA S, KUROKI S, et al. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly (ethylene oxide)-based solid polymer electrolytes[J]. Energy & Environmental Science, 2010, 3(12):1995-2002.
[16] NOOR S A M, AHMAD A, TALIB I A, et al. Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte[J]. Ionics, 2010, 16(2):161-170.
[17] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24):1501082.
[18] RAMESH S, LU S C. Effect of lithium salt concentration on crystallinity of poly (vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes[J]. Journal of Molecular Structure, 2011, 994(1/3):403-409.
[19] ANGULAKSHMI N, THOMAS S, NAHM K S, et al. Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries[J]. Ionics, 2011, 17(5):407-414.
[20] VIRYA A, LIAN K. Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors[J]. Electrochemistry Communications, 2017, 100(74):33-37.
[21] VIRYA A, LIAN K. Li2SO4-polyacrylamide polymer electrolytes for 2.0V solid symmetric supercapacitors[J]. Electrochemistry Communications, 2017, 81:52-55.
[22] FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly (ethylene oxide)[J]. Polymer, 1973, 14(11):589.
[23] WRIGHT P V. Electrical conductivity in ionic complexes of poly (ethylene oxide)[J]. British Polymer Journal, 1975, 7(5):319-327.
[24] ARMAND M. Polymer solid electrolytes-an overview[J]. Solid State Ionics, 1983, 9:745-754.
[25] SUMBOJA A, GE X, ZHENG G, et al. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst[J]. Journal of Power Sources, 2016, 100(332):330-336.
[26] VAQUERO S, PALMA J, ANDERSON M, et al. Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes[J]. Int J Electrochem Sci, 2013, 8:10293-10307.
[27] NA R, HUO P, ZHANG X, et al. A flexible solid-state supercapacitor based on a poly (aryl ether ketone)-poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications[J]. RSC Advances, 2016, 6(69):65186-65195.
[28] NGAI K S, RAMESH S, RAMESH K, et al. A review of polymer electrolytes:fundamental, approaches and applications[J]. Ionics, 2016, 22(8):1259-1279.
[29] RAMESH S, LIEW C W, RAMESH K. Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes[J]. Journal of Non-Crystalline Solids, 2011, 357(10):2132-2138.
[30] LIEW C W, DURAIRAJ R, RAMESH S. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt[J]. PloS One, 2014, 9(7):e102815.
[31] RAMESH S, LIEW C W, MORRIS E, et al. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes[J]. Thermochimica Acta, 2010, 511(1/2):140-146.
[32] 殷金玲,张宝宏. 超级电容器工作电解质的研究概况[J]. 应用科技, 2004, 31(10):46-48. YIN J L, ZHANG B H. A review of the working electrolytes for supercapacitor[J]. Applied Science and Technology, 2004, 31(10):46-48.
[33] AGRAWAL R C, PANDEY G P. Solid polymer electrolytes:materials designing and all-solid-state battery applications:an overview[J]. Journal of Physics D, 2008, 41(22):223001.
[34] 魏颖,张光菊,郎笑石. 超级电容器关键材料制备及应用[M]. 北京:化学工业出版社,2018:190. WEI Y, ZHANG G J, LANG X S. Preparation and application of key materials for supercapacitors[M]. Beijing:Chemical Industry Press, 2018:190.
[35] WADA H, YOSHIKAWA K, NOHARA S, et al. Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Journal of Power Sources, 2006, 159(2):1464-1467.
[36] STEPNIAK I, CISZEWSKI A. Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Electrochimica Acta, 2011, 56(5):2477-2482.
[37] VIJAYAKUMAR V, GHOSH M, TORRIS AT A, et al. Water-in-acid gel polymer electrolyte realized through a phosphoric acid-enriched polyelectrolyte matrix toward solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10):12630-12640.
[38] XU C, YAN J, QIN Q, et al. All solid supercapacitors based on an anion conducting polymer electrolyte[J]. RSC Advances, 2016, 6(24):19826-19832.
[39] JIANG M, ZHU J, CHEN C, et al. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(5):3473-3481.
[40] JIANG M, ZHU J, CHEN C, et al. Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(42):16588-16596.
[41] LEWANDOWSKI A, OLEJNICZAK A, GALINSKI M, et al. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J]. Journal of Power Sources, 2010, 195(17):5814-5819.
[42] NA R, LU N, ZHANG S, et al. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors[J]. Electrochimica Acta, 2018, 290:262-272.
[43] ROGERS R D, SEDDON K R. Ionic liquids-solvents of the future?[J]. Science, 2003, 302(5646):792-793.
[44] WASSERSCHEID P, KEIM W. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angewandte Chemie International Edition, 2000, 39(21):3772-3789.
[45] EFTEKHARI A. Supercapacitors utilising ionic liquids[J]. Energy Storage Materials, 2017, 9:47-69.
[46] SINGH R, BHATTACHARYA B, GUPTA M, et al. Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices[J]. International Journal of Hydrogen Energy, 2017, 42(21):14602-14607.
[47] NAWAZ A, SHARIF R, RHEE H W, et al. Efficient dye sensitized solar cell and supercapacitor using 1-ethyl 3-methyl imidazolium dicyanamide incorporated PVDF-HFP polymer matrix[J]. Journal of Industrial and Engineering Chemistry, 2016, 33:381-384.
[48] JIANG Y, YANG C, ZHANG Q, et al. Reduced graphene oxide and gel polymer based thin film supercapacitor[C]//IEEE SENSORS Council 2016, Washington, DC:IEEE, 2016:1-3.
[49] MUCHAKAYALA R, SONG S, WANG J, et al. Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films[J]. Journal of Industrial and Engineering Chemistry, 2018, 59:79-89.
[50] HONG K, YU K J, KIM H J, et al. Electrospun polymer electrolyte nanocomposites for solid-state energy storage[J]. Composites Part B, 2018, 152:275-281.
[51] PANDEY G P, LIU T, HANCOCK C, et al. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors[J]. Journal of Power Sources, 2016, 100(328):510-519.
[52] DAGOUSSET L, POGNON G, NGUYEN G T M, et al. Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability[J]. Journal of Power Sources, 2018, 391:86-93.
[53] NÉGRE L, DAFFOS B, TURQ V, et al. Ionogel-based solid-state supercapacitor operating over a wide range of temperature[J]. Electrochimica Acta, 2016, 206:490-495.
[54] TIRUYE G A, MUÑOZ-TORRERO D, PALMA J, et al. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids[J]. Journal of Power Sources, 2016, 100(326):560-568.
[55] YUAN J, ANTONIETTI M. Poly (ionic liquid)s:polymers expanding classical property profiles[J]. Polymer, 2011, 52(7):1469-1482.
[56] YU M, HAN Y, CHENG X, et al. Holey tungsten oxynitride nanowires:novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage[J]. Advanced Materials, 2015, 27(19):3085-3091.
[57] ZHANG P, YANG L C, LI L L, et al. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires[J]. Journal of Membrane Science, 2011, 379(1/2):80-85.
[58] KIM H S, KUM K S, CHO W I, et al. Electrochemical and physical properties of composite polymer electrolyte of poly (methyl methacrylate) and poly (ethylene glycol diacrylate)[J]. Journal of Power Sources, 2003, 124(1):221-224.
[59] ZHANG P, ZHANG H P, LI G C, et al. A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte[J]. Electrochemistry Communications, 2008, 10(7):1052-1055.
[60] TARASCON J M, GOZDZ A S, SCHMUTZ C, et al. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ionics, 1996, 86(60):49-54.
[61] JIANG Z, CARROLL B, ABRAHAM K M. Studies of some poly(vinylidene fluoride) electrolytes[J]. Electrochimica Acta, 1997, 42(17):2667-2677.
[62] HE T, JIA R, LANG X, et al. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor[J]. Journal of the Electrochemical Society, 2017, 164(13):E379-E384.
[63] ZHAI W, ZHU H, WANG L, et al. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid[BMIM]BF4 for Lithium ion batteries[J]. Electrochimica Acta, 2014, 133:623-630.
[64] YADAV N, MISHRA K, HASHMI S A. Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor[J]. Electrochimica Acta, 2017, 235:570-582.
[65] ZHAO D, CHEN C, ZHANG Q, et al. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane[J]. Advanced Energy Materials, 2017, 7(18):1700739.
[66] LIU M, GU M, TIAN Y, et al. Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers:electrospinning synthesis and concentration-modulated upconversion luminescent properties[J]. Journal of Materials Chemistry C, 2017, 5(16):4025-4033.
[67] XIONG X, LUO W, HU X, et al. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries[J]. Scientific Reports, 2015, 5:9254.
[68] CHEN Z, YANG T, SHI H, et al. Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage[J]. Advanced Materials Interfaces, 2017, 4(3):1600816.
[69] NA R, WANG X, LU N, et al. Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste[J]. Electrochimica Acta, 2018, 274:316-325.
[70] CAO J H, ZHU B K, XU Y Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes[J]. Journal of Membrane Science, 2006, 281(1/2):446-453.
[71] ZHANG J, SUN B, HUANG X, et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety[J]. Scientific Reports, 2014, 4:6007.
[72] LI Q, SUN H Y, TAKEDA Y, et al. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources, 2001, 94(2):201-205.
[73] GERBALDI C, NAIR J R, KULANDAINATHAN M A, et al. Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2(26):9948-9954.
[74] NI'MAH Y L, CHENG M Y, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278:375-381.
[75] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4):2740-2745.
[76] WANG W, ALEXANDRIDIS P. Composite polymer electrolytes:nanoparticles affect structure and properties[J]. Polymers, 2016, 8(11):387.
[77] YADAV N, MISHRA K, HASHMI S A. Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers, 2018, 30(8):957-970.
[78] ORTEGA P F R, TRIGUEIRO J P C, SILVA G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochimica Acta, 2016, 188:809-817.
[79] VIJAYAKUMAR V, KHASTGIR D. Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells[J]. Carbohydrate Polymers, 2018, 179:152-163.
[80] YANG X, ZHANG F, ZHANG L, et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials, 2013, 23(26):3353-3360.
[81] KIM K, BAE J, LIM M Y, et al. Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications[J]. Journal of Membrane Science, 2017, 525:125-134.
[82] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4):2740-2745.
[83] LIANG B, TANG S, JIANG Q, et al. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3[J]. Electrochimica Acta, 2015, 169:334-341.
[84] LIEW C W. Nanocomposite polymer electrolytes for electric double layer capacitors (EDLCs) application[M]//Nanomaterials in Energy Devices. Florida:CRC Press, 2017:110-149.
[85] HU J, XIE K, LIU X, et al. Dramatically enhanced ion conductivity of gel polymer electrolyte for supercapacitor via h-BN nanosheets doping[J]. Electrochimica Acta, 2017, 227:455-461.
[86] HOU G M, HUANG Y F, RUAN W H, et al. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor[J]. Journal of Solid State Electrochemistry, 2016, 20(7):1903-1911.
[87] KAM W, LIEW C W, LIM J Y, et al. Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes[J]. Ionics, 2014, 20(5):665-674.
[88] ZHOU B, JO Y H, WANG R, et al. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019,7(17):10354-10362.
[89] RYDZEK G, JI Q, LI M, et al. Electrochemical nanoarchitectonics and layer-by-layer assembly:from basics to future[J]. Nano Today, 2015, 10(2):138-167.
[90] FIC K, LOTA G, MELLER M, et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5(2):5842-5850.
[91] PANDEY K, YADAV P, MUKHOPADHYAY I. Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17(2):878-887.
[92] ROLDÁN S, BLANCO C, GRANDA M, et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J]. Angewandte Chemie International Edition, 2011, 50(7):1699-1701.
[93] YU H, WU J, FAN L, et al. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor[J]. Journal of Power Sources, 2012, 198:402-407.
[94] ZHONG J, FAN L Q, WU X, et al. Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes[J]. Electrochimica Acta, 2015, 166:150-156.
[95] YU F, HUANG M, WU J, et al. A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors[J]. Journal of Applied Polymer Science, 2014, 131(2):39784.
[96] YU H, WU J, FAN L, et al. Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte[J]. Electrochimica Acta, 2011, 56(20):6881-6886.
[97] YU H, WU J, LIN J, et al. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte[J]. Chem Phys Chem, 2013, 14(2):394-399.
[98] WU J, YU H, FAN L, et al. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor[J]. Journal of Materials Chemistry, 2012, 22(36):19025-19030.
[99] CHODANKAR N R, DUBAL D P, LOKHANDE A C, et al. An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films[J]. Scientific Reports, 2016, 6:39205.
[100] SENTHILKUMAR S T, SELVAN R K, MELO J S. Redox additive/active electrolytes:a novel approach to enhance the performance of supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(40):12386-12394.
[101] TU Q M, FAN L Q, PAN F, et al. Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors[J]. Electrochimica Acta, 2018, 268(60):562-568.
[102] SUN K, RAN F, ZHAO G, et al. High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte[J]. RSC Advances, 2016, 6(60):55225-55232.
[103] KARAMAN B, BOZKURT A. Enhanced performance of supercapacitor based on boric acid doped PVA-H2SO4 gel polymer electrolyte system[J]. International Journal of Hydrogen Energy, 2018, 43(12):6229-6237.
[104] VEERASUBRAMANI G K, KRISHNAMOORTHY K, PAZHAMALAI P, et al. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte[J]. Carbon, 2016, 105:638-648.
[105] GAO Z, ZHANG L, CHANG J, et al. Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance[J]. Chemical Engineering Journal, 2018, 335:590-599.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[4] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[5] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[6] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[7] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[8] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[9] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[10] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[11] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[12] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[13] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[14] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[15] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持