Research progress of polymer electrolytes in supercapacitors
Zhi-yu XUN1,2, Pu HOU1,2, Yang LIU1,2, Shou-peng NI1,2, Peng-fei HUO1,2,*()
1 Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China 2 Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
With the rapid development of portable devices, polymer electrolytes with high safety performance are receiving widespread attention. The polymer electrolytes applied in supercapacitors in recent years were introduced in this review, including all-solid-state polymer electrolytes, gel polymer electrolytes, porous polymer electrolytes, composite polymer electrolytes and redox polymer electrolytes capable of providing pseudocapacitance, and the characteristics and research progress were also discussed in details. It was proposed that the development of organic composite gel polymer electrolytes with wide voltage window, high ionic conductivity, high mechanical strength and light weight will be the trend in the field of electrolytes for supercapacitors in the future. Polymer electrolyte with excellent comprehensive performance will play an important role in the field of new energy resources such as supercapacitors.
HELMHOLTZ H V . Helmholtz's theory of double electric layers[J]. J Frankl Inst, 1883, 115 (4): 310.
2
LI J , CHENG X , SHASHURIN A , et al. Review of electrochemical capacitors based on carbon nanotubes and graphene[J]. Graphene, 2012, 1 (1): 1- 13.
3
WU Z , LI L , YAN J , et al. Materials design and system construction for conventional and new-concept supercapacitors[J]. Advanced Science, 2017, 4 (6): 1600382.
doi: 10.1002/advs.201600382
4
YANG P , MAI W . Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8, 274- 290.
doi: 10.1016/j.nanoen.2014.05.022
5
AUGUSTYN V , SIMON P , DUNN B . Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7 (5): 1597- 1614.
6
VANGARI M , PRYOR T , JIANG L . Supercapacitors:review of materials and fabrication methods[J]. Journal of Energy Engineering, 2012, 139 (2): 72- 79.
7
XIE K , QIN X , WANG X , et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24 (3): 347- 352.
doi: 10.1002/adma.201103872
8
PERRICONE E , CHAMAS M , LEPRETRE J C , et al. Safe and performant electrolytes for supercapacitor[J]. Journal of Power Sources, 2013, 239 (1): 217- 224.
9
ARYA A , SHARMA A L . Polymer electrolyte for lithium ion batteries:a critical study[J]. Ionics, 2017, 23 (3): 497- 540.
doi: 10.1007/s11581-016-1908-6
10
ZHONG C , DENG Y , HU W , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44 (21): 7484- 7539.
doi: 10.1039/C5CS00303B
LV X J , ZHU P . Research progress in polymer electrolytes for supercapacitor[J]. Micronanoelectronic Technology, 2016, 53 (2): 102- 107.
12
ZHONG C , DENG Y , HU W , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44 (21): 7484- 7539.
doi: 10.1039/C5CS00303B
13
BERTHIER C , GORECKI W , MINIER M , et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11 (1): 91- 95.
14
BAUME N , STEEL G , EDWARDS T , et al. No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen®) in cyclists[J]. European Journal of Applied Physiology, 2008, 104 (4): 589- 600.
doi: 10.1007/s00421-008-0802-y
15
NAKAYAMA M , WADA S , KUROKI S , et al. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly (ethylene oxide)-based solid polymer electrolytes[J]. Energy & Environmental Science, 2010, 3 (12): 1995- 2002.
16
NOOR S A M , AHMAD A , TALIB I A , et al. Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte[J]. Ionics, 2010, 16 (2): 161- 170.
doi: 10.1007/s11581-009-0385-6
17
ZHANG J , ZHAO J , YUE L , et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5 (24): 1501082.
doi: 10.1002/aenm.201501082
18
RAMESH S , LU S C . Effect of lithium salt concentration on crystallinity of poly (vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes[J]. Journal of Molecular Structure, 2011, 994 (1/3): 403- 409.
19
ANGULAKSHMI N , THOMAS S , NAHM K S , et al. Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries[J]. Ionics, 2011, 17 (5): 407- 414.
doi: 10.1007/s11581-010-0517-z
20
VIRYA A , LIAN K . Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors[J]. Electrochemistry Communications, 2017, 100 (74): 33- 37.
21
VIRYA A , LIAN K . Li2SO4-polyacrylamide polymer electrolytes for 2.0V solid symmetric supercapacitors[J]. Electrochemistry Communications, 2017, 81, 52- 55.
doi: 10.1016/j.elecom.2017.06.003
22
FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly (ethylene oxide)[J]. Polymer, 1973, 14 (11): 589.
23
WRIGHT P V . Electrical conductivity in ionic complexes of poly (ethylene oxide)[J]. British Polymer Journal, 1975, 7 (5): 319- 327.
doi: 10.1002/pi.4980070505
24
ARMAND M . Polymer solid electrolytes-an overview[J]. Solid State Ionics, 1983, 9, 745- 754.
25
SUMBOJA A , GE X , ZHENG G , et al. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst[J]. Journal of Power Sources, 2016, 100 (332): 330- 336.
26
VAQUERO S , PALMA J , ANDERSON M , et al. Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes[J]. Int J Electrochem Sci, 2013, 8, 10293- 10307.
27
NA R , HUO P , ZHANG X , et al. A flexible solid-state supercapacitor based on a poly (aryl ether ketone)-poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications[J]. RSC Advances, 2016, 6 (69): 65186- 65195.
doi: 10.1039/C6RA11202A
28
NGAI K S , RAMESH S , RAMESH K , et al. A review of polymer electrolytes:fundamental, approaches and applications[J]. Ionics, 2016, 22 (8): 1259- 1279.
doi: 10.1007/s11581-016-1756-4
29
RAMESH S , LIEW C W , RAMESH K . Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes[J]. Journal of Non-Crystalline Solids, 2011, 357 (10): 2132- 2138.
doi: 10.1016/j.jnoncrysol.2011.03.004
30
LIEW C W , DURAIRAJ R , RAMESH S . Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt[J]. PloS One, 2014, 9 (7): e102815.
doi: 10.1371/journal.pone.0102815
31
RAMESH S , LIEW C W , MORRIS E , et al. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes[J]. Thermochimica Acta, 2010, 511 (1/2): 140- 146.
YIN J L , ZHANG B H . A review of the working electrolytes for supercapacitor[J]. Applied Science and Technology, 2004, 31 (10): 46- 48.
doi: 10.3969/j.issn.1009-671X.2004.10.017
33
AGRAWAL R C , PANDEY G P . Solid polymer electrolytes:materials designing and all-solid-state battery applications:an overview[J]. Journal of Physics D, 2008, 41 (22): 223001.
doi: 10.1088/0022-3727/41/22/223001
WEI Y , ZHANG G J , LANG X S . Preparation and application of key materials for supercapacitors[M]. Beijing: Chemical Industry Press, 2018: 190.
35
WADA H , YOSHIKAWA K , NOHARA S , et al. Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Journal of Power Sources, 2006, 159 (2): 1464- 1467.
doi: 10.1016/j.jpowsour.2005.11.073
36
STEPNIAK I , CISZEWSKI A . Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Electrochimica Acta, 2011, 56 (5): 2477- 2482.
doi: 10.1016/j.electacta.2010.11.078
37
VIJAYAKUMAR V , GHOSH M , TORRIS AT A , et al. Water-in-acid gel polymer electrolyte realized through a phosphoric acid-enriched polyelectrolyte matrix toward solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (10): 12630- 12640.
38
XU C , YAN J , QIN Q , et al. All solid supercapacitors based on an anion conducting polymer electrolyte[J]. RSC Advances, 2016, 6 (24): 19826- 19832.
doi: 10.1039/C5RA26848F
39
JIANG M , ZHU J , CHEN C , et al. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8 (5): 3473- 3481.
40
JIANG M , ZHU J , CHEN C , et al. Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16588- 16596.
doi: 10.1039/C6TA07063A
41
LEWANDOWSKI A , OLEJNICZAK A , GALINSKI M , et al. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J]. Journal of Power Sources, 2010, 195 (17): 5814- 5819.
doi: 10.1016/j.jpowsour.2010.03.082
42
NA R , LU N , ZHANG S , et al. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors[J]. Electrochimica Acta, 2018, 290, 262- 272.
doi: 10.1016/j.electacta.2018.09.074
43
ROGERS R D , SEDDON K R . Ionic liquids-solvents of the future?[J]. Science, 2003, 302 (5646): 792- 793.
doi: 10.1126/science.1090313
44
WASSERSCHEID P , KEIM W . Ionic liquids-new "solutions" for transition metal catalysis[J]. Angewandte Chemie International Edition, 2000, 39 (21): 3772- 3789.
45
EFTEKHARI A . Supercapacitors utilising ionic liquids[J]. Energy Storage Materials, 2017, 9, 47- 69.
doi: 10.1016/j.ensm.2017.06.009
46
SINGH R , BHATTACHARYA B , GUPTA M , et al. Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices[J]. International Journal of Hydrogen Energy, 2017, 42 (21): 14602- 14607.
doi: 10.1016/j.ijhydene.2017.04.126
47
NAWAZ A , SHARIF R , RHEE H W , et al. Efficient dye sensitized solar cell and supercapacitor using 1-ethyl 3-methyl imidazolium dicyanamide incorporated PVDF-HFP polymer matrix[J]. Journal of Industrial and Engineering Chemistry, 2016, 33, 381- 384.
doi: 10.1016/j.jiec.2015.10.035
48
JIANG Y, YANG C, ZHANG Q, et al. Reduced graphene oxide and gel polymer based thin film supercapacitor[C]//IEEE SENSORS Council 2016, Washington, DC: IEEE, 2016: 1-3.
49
MUCHAKAYALA R , SONG S , WANG J , et al. Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films[J]. Journal of Industrial and Engineering Chemistry, 2018, 59, 79- 89.
doi: 10.1016/j.jiec.2017.10.009
50
HONG K , YU K J , KIM H J , et al. Electrospun polymer electrolyte nanocomposites for solid-state energy storage[J]. Composites Part B, 2018, 152, 275- 281.
doi: 10.1016/j.compositesb.2018.07.023
51
PANDEY G P , LIU T , HANCOCK C , et al. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors[J]. Journal of Power Sources, 2016, 100 (328): 510- 519.
52
DAGOUSSET L , POGNON G , NGUYEN G T M , et al. Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability[J]. Journal of Power Sources, 2018, 391, 86- 93.
doi: 10.1016/j.jpowsour.2018.04.073
53
NÉGRE L , DAFFOS B , TURQ V , et al. Ionogel-based solid-state supercapacitor operating over a wide range of temperature[J]. Electrochimica Acta, 2016, 206, 490- 495.
doi: 10.1016/j.electacta.2016.02.013
54
TIRUYE G A , MUÑOZ-TORRERO D , PALMA J , et al. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids[J]. Journal of Power Sources, 2016, 100 (326): 560- 568.
YU M , HAN Y , CHENG X , et al. Holey tungsten oxynitride nanowires:novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage[J]. Advanced Materials, 2015, 27 (19): 3085- 3091.
doi: 10.1002/adma.201500493
57
ZHANG P , YANG L C , LI L L , et al. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires[J]. Journal of Membrane Science, 2011, 379 (1/2): 80- 85.
58
KIM H S , KUM K S , CHO W I , et al. Electrochemical and physical properties of composite polymer electrolyte of poly (methyl methacrylate) and poly (ethylene glycol diacrylate)[J]. Journal of Power Sources, 2003, 124 (1): 221- 224.
doi: 10.1016/S0378-7753(03)00592-5
59
ZHANG P , ZHANG H P , LI G C , et al. A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte[J]. Electrochemistry Communications, 2008, 10 (7): 1052- 1055.
doi: 10.1016/j.elecom.2008.04.037
60
TARASCON J M , GOZDZ A S , SCHMUTZ C , et al. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ionics, 1996, 86 (60): 49- 54.
61
JIANG Z , CARROLL B , ABRAHAM K M . Studies of some poly(vinylidene fluoride) electrolytes[J]. Electrochimica Acta, 1997, 42 (17): 2667- 2677.
doi: 10.1016/S0013-4686(97)00005-4
62
HE T , JIA R , LANG X , et al. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor[J]. Journal of the Electrochemical Society, 2017, 164 (13): E379- E384.
doi: 10.1149/2.0631713jes
63
ZHAI W , ZHU H , WANG L , et al. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid[BMIM]BF4 for Lithium ion batteries[J]. Electrochimica Acta, 2014, 133, 623- 630.
doi: 10.1016/j.electacta.2014.04.076
64
YADAV N , MISHRA K , HASHMI S A . Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor[J]. Electrochimica Acta, 2017, 235, 570- 582.
doi: 10.1016/j.electacta.2017.03.101
65
ZHAO D , CHEN C , ZHANG Q , et al. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane[J]. Advanced Energy Materials, 2017, 7 (18): 1700739.
doi: 10.1002/aenm.201700739
66
LIU M , GU M , TIAN Y , et al. Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers:electrospinning synthesis and concentration-modulated upconversion luminescent properties[J]. Journal of Materials Chemistry C, 2017, 5 (16): 4025- 4033.
doi: 10.1039/C7TC00188F
67
XIONG X , LUO W , HU X , et al. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries[J]. Scientific Reports, 2015, 5, 9254.
doi: 10.1038/srep09254
68
CHEN Z , YANG T , SHI H , et al. Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage[J]. Advanced Materials Interfaces, 2017, 4 (3): 1600816.
doi: 10.1002/admi.201600816
69
NA R , WANG X , LU N , et al. Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste[J]. Electrochimica Acta, 2018, 274, 316- 325.
doi: 10.1016/j.electacta.2018.04.127
70
CAO J H , ZHU B K , XU Y Y . Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes[J]. Journal of Membrane Science, 2006, 281 (1/2): 446- 453.
71
ZHANG J , SUN B , HUANG X , et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety[J]. Scientific Reports, 2014, 4, 6007.
72
LI Q , SUN H Y , TAKEDA Y , et al. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources, 2001, 94 (2): 201- 205.
doi: 10.1016/S0378-7753(00)00587-5
73
GERBALDI C , NAIR J R , KULANDAINATHAN M A , et al. Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2 (26): 9948- 9954.
doi: 10.1039/C4TA01856G
74
NI'MAH Y L , CHENG M Y , CHENG J H , et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278, 375- 381.
doi: 10.1016/j.jpowsour.2014.11.047
75
LIU W , LIU N , SUN J , et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15 (4): 2740- 2745.
doi: 10.1021/acs.nanolett.5b00600
76
WANG W , ALEXANDRIDIS P . Composite polymer electrolytes:nanoparticles affect structure and properties[J]. Polymers, 2016, 8 (11): 387.
doi: 10.3390/polym8110387
77
YADAV N , MISHRA K , HASHMI S A . Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers, 2018, 30 (8): 957- 970.
doi: 10.1177/0954008318774392
78
ORTEGA P F R , TRIGUEIRO J P C , SILVA G G , et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochimica Acta, 2016, 188, 809- 817.
doi: 10.1016/j.electacta.2015.12.056
79
VIJAYAKUMAR V , KHASTGIR D . Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells[J]. Carbohydrate Polymers, 2018, 179, 152- 163.
doi: 10.1016/j.carbpol.2017.09.083
80
YANG X , ZHANG F , ZHANG L , et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials, 2013, 23 (26): 3353- 3360.
doi: 10.1002/adfm.201203556
81
KIM K , BAE J , LIM M Y , et al. Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications[J]. Journal of Membrane Science, 2017, 525, 125- 134.
doi: 10.1016/j.memsci.2016.10.038
82
LIU W , LIU N , SUN J , et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15 (4): 2740- 2745.
doi: 10.1021/acs.nanolett.5b00600
83
LIANG B , TANG S , JIANG Q , et al. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3[J]. Electrochimica Acta, 2015, 169, 334- 341.
doi: 10.1016/j.electacta.2015.04.039
84
LIEW C W . Nanocomposite polymer electrolytes for electric double layer capacitors (EDLCs) application[M]. Florida: CRC Press, 2017: 110- 149.
85
HU J , XIE K , LIU X , et al. Dramatically enhanced ion conductivity of gel polymer electrolyte for supercapacitor via h-BN nanosheets doping[J]. Electrochimica Acta, 2017, 227, 455- 461.
doi: 10.1016/j.electacta.2017.01.045
86
HOU G M , HUANG Y F , RUAN W H , et al. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor[J]. Journal of Solid State Electrochemistry, 2016, 20 (7): 1903- 1911.
doi: 10.1007/s10008-015-3031-4
87
KAM W , LIEW C W , LIM J Y , et al. Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes[J]. Ionics, 2014, 20 (5): 665- 674.
doi: 10.1007/s11581-013-1012-0
88
ZHOU B , JO Y H , WANG R , et al. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (17): 10354- 10362.
doi: 10.1039/C9TA01214A
89
RYDZEK G , JI Q , LI M , et al. Electrochemical nanoarchitectonics and layer-by-layer assembly:from basics to future[J]. Nano Today, 2015, 10 (2): 138- 167.
doi: 10.1016/j.nantod.2015.02.008
90
FIC K , LOTA G , MELLER M , et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5 (2): 5842- 5850.
91
PANDEY K , YADAV P , MUKHOPADHYAY I . Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17 (2): 878- 887.
doi: 10.1039/C4CP04321A
92
ROLDÁN S , BLANCO C , GRANDA M , et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J]. Angewandte Chemie International Edition, 2011, 50 (7): 1699- 1701.
doi: 10.1002/anie.201006811
93
YU H , WU J , FAN L , et al. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor[J]. Journal of Power Sources, 2012, 198, 402- 407.
doi: 10.1016/j.jpowsour.2011.09.110
94
ZHONG J , FAN L Q , WU X , et al. Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes[J]. Electrochimica Acta, 2015, 166, 150- 156.
doi: 10.1016/j.electacta.2015.03.114
95
YU F , HUANG M , WU J , et al. A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors[J]. Journal of Applied Polymer Science, 2014, 131 (2): 39784.
96
YU H , WU J , FAN L , et al. Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte[J]. Electrochimica Acta, 2011, 56 (20): 6881- 6886.
doi: 10.1016/j.electacta.2011.06.039
97
YU H , WU J , LIN J , et al. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte[J]. Chem Phys Chem, 2013, 14 (2): 394- 399.
doi: 10.1002/cphc.201200816
98
WU J , YU H , FAN L , et al. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor[J]. Journal of Materials Chemistry, 2012, 22 (36): 19025- 19030.
doi: 10.1039/c2jm33856d
99
CHODANKAR N R , DUBAL D P , LOKHANDE A C , et al. An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films[J]. Scientific Reports, 2016, 6, 39205.
doi: 10.1038/srep39205
100
SENTHILKUMAR S T , SELVAN R K , MELO J S . Redox additive/active electrolytes:a novel approach to enhance the performance of supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1 (40): 12386- 12394.
doi: 10.1039/c3ta11959a
101
TU Q M , FAN L Q , PAN F , et al. Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors[J]. Electrochimica Acta, 2018, 268 (60): 562- 568.
102
SUN K , RAN F , ZHAO G , et al. High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte[J]. RSC Advances, 2016, 6 (60): 55225- 55232.
doi: 10.1039/C6RA06797B
103
KARAMAN B , BOZKURT A . Enhanced performance of supercapacitor based on boric acid doped PVA-H2SO4 gel polymer electrolyte system[J]. International Journal of Hydrogen Energy, 2018, 43 (12): 6229- 6237.
doi: 10.1016/j.ijhydene.2018.02.032
104
VEERASUBRAMANI G K , KRISHNAMOORTHY K , PAZHAMALAI P , et al. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte[J]. Carbon, 2016, 105, 638- 648.
doi: 10.1016/j.carbon.2016.05.008
105
GAO Z , ZHANG L , CHANG J , et al. Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance[J]. Chemical Engineering Journal, 2018, 335, 590- 599.
doi: 10.1016/j.cej.2017.11.037