Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (11): 71-83    DOI: 10.11868/j.issn.1001-4381.2019.000346
  综述 本期目录 | 过刊浏览 | 高级检索 |
聚合物电解质在超级电容器中的研究进展
寻之玉1,2, 侯璞1,2, 刘旸1,2, 倪守朋1,2, 霍鹏飞1,2,*()
1 东北林业大学 生物质材料科学与技术教育部重点实验室, 哈尔滨 150040
2 东北林业大学 材料科学与工程学院, 哈尔滨 150040
Research progress of polymer electrolytes in supercapacitors
Zhi-yu XUN1,2, Pu HOU1,2, Yang LIU1,2, Shou-peng NI1,2, Peng-fei HUO1,2,*()
1 Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
2 Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
全文: PDF(5418 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

便携式电子器件迅速发展,安全性能更高的聚合物电解质受到广泛关注。本文介绍了近些年应用于超级电容器的各类聚合物电解质,包括全固态聚合物电解质、凝胶聚合物电解质、多孔聚合物电解质、复合聚合物电解质以及能够提供赝电容的氧化还原聚合物电解质,并详细讨论了上述聚合物电解质的特点和研究进展。提出了发展宽电压窗口、高离子导电型、高机械强度、质轻且薄的有机复合凝胶聚合物电解质会是超级电容器电解质领域未来的发展趋势;综合性能优异的聚合物电解质将会在超级电容器等新能源领域发挥重要作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
寻之玉
侯璞
刘旸
倪守朋
霍鹏飞
关键词 超级电容器聚合物电解质离子传导率电化学性能    
Abstract

With the rapid development of portable devices, polymer electrolytes with high safety performance are receiving widespread attention. The polymer electrolytes applied in supercapacitors in recent years were introduced in this review, including all-solid-state polymer electrolytes, gel polymer electrolytes, porous polymer electrolytes, composite polymer electrolytes and redox polymer electrolytes capable of providing pseudocapacitance, and the characteristics and research progress were also discussed in details. It was proposed that the development of organic composite gel polymer electrolytes with wide voltage window, high ionic conductivity, high mechanical strength and light weight will be the trend in the field of electrolytes for supercapacitors in the future. Polymer electrolyte with excellent comprehensive performance will play an important role in the field of new energy resources such as supercapacitors.

Key wordssupercapacitor    polymer electrolyte    ionic conductivity    electrochemical performance
收稿日期: 2019-04-11      出版日期: 2019-11-21
中图分类号:  TB324  
  TQ152  
基金资助:国家自然科学基金青年基金项目(51603032);中央高校基本科研业务费专项资金项目(2572018BB01);中国博士后科学基金面上项目(2017M621230)
通讯作者: 霍鹏飞     E-mail: huopengfei@nefu.edu.cn
作者简介: 霍鹏飞(1987-), 男, 讲师, 博士, 研究方向为聚合物电解质及储能元件, 联系地址:黑龙江省哈尔滨市香坊区和兴路26号东北林业大学工程楼902(150040), E-mail:huopengfei@nefu.edu.cn
引用本文:   
寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
Zhi-yu XUN, Pu HOU, Yang LIU, Shou-peng NI, Peng-fei HUO. Research progress of polymer electrolytes in supercapacitors. Journal of Materials Engineering, 2019, 47(11): 71-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000346      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/71
Fig.1  电双层电容器(a)和赝电容电容器(b)的储能机理示意图[6]
Fig.2  使用Li2SO4-PAM ASPE的超级电容器的CV曲线[21]
Fig.3  开环聚合(PEG-TBBPA)膜(a)和GPE的原理图(b)[42]
Fig.4  (PEG-TBBPA)膜(a)和商业分离器(b)的液体电解质吸收和泄漏速率随时间的变化; GPE和LE-LiClO4/PC的离子电导率的温度依赖性(c)和电化学稳定性窗口(d)[42]
Fig.5  扫描速率为10mV · s-1时PVDF-HFP+x[PMpyr][NTf2]凝胶聚合物电解质薄膜的循环伏安图(x(质量分数)=50%, 60%, 70%和80%)[49]
Fig.6  使用蛋和米废物(破碎的蛋壳和稻壳)制造绿色固态超级电容器的示意图[69]
Fig.7  含有不同BN含量的BN-PVA-H2SO4 GPE的离子电导率[85]
Fig.8  离子传导过程的图解[85]
(a)离子沿扭曲的PVA链传导; (b)适量的BN纳米片导致离子的直接传导; (c)过量的BN纳米片阻碍了离子的传导
Fig.9  具有带电结构并掺入PVA/KOH凝胶电解质中的HBPAE-SiO2颗粒的合成[75]
Fig.10  用于制备氧化还原添加剂聚合物电解质的示意图[100]
Fig.11  不同BMIMX-PVA质量比(X=Cl,I)下PVA-Li2SO4-BMIMI和PVA-Li2SO4-BMIMCl GPEs的离子电导率[101]
1 HELMHOLTZ H V . Helmholtz's theory of double electric layers[J]. J Frankl Inst, 1883, 115 (4): 310.
2 LI J , CHENG X , SHASHURIN A , et al. Review of electrochemical capacitors based on carbon nanotubes and graphene[J]. Graphene, 2012, 1 (1): 1- 13.
3 WU Z , LI L , YAN J , et al. Materials design and system construction for conventional and new-concept supercapacitors[J]. Advanced Science, 2017, 4 (6): 1600382.
doi: 10.1002/advs.201600382
4 YANG P , MAI W . Flexible solid-state electrochemical supercapacitors[J]. Nano Energy, 2014, 8, 274- 290.
doi: 10.1016/j.nanoen.2014.05.022
5 AUGUSTYN V , SIMON P , DUNN B . Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7 (5): 1597- 1614.
6 VANGARI M , PRYOR T , JIANG L . Supercapacitors:review of materials and fabrication methods[J]. Journal of Energy Engineering, 2012, 139 (2): 72- 79.
7 XIE K , QIN X , WANG X , et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24 (3): 347- 352.
doi: 10.1002/adma.201103872
8 PERRICONE E , CHAMAS M , LEPRETRE J C , et al. Safe and performant electrolytes for supercapacitor[J]. Journal of Power Sources, 2013, 239 (1): 217- 224.
9 ARYA A , SHARMA A L . Polymer electrolyte for lithium ion batteries:a critical study[J]. Ionics, 2017, 23 (3): 497- 540.
doi: 10.1007/s11581-016-1908-6
10 ZHONG C , DENG Y , HU W , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44 (21): 7484- 7539.
doi: 10.1039/C5CS00303B
11 吕晓静, 朱平. 超级电容器聚合物电解质的研究进展[J]. 微纳电子技术, 2016, 53 (2): 102- 107.
11 LV X J , ZHU P . Research progress in polymer electrolytes for supercapacitor[J]. Micronanoelectronic Technology, 2016, 53 (2): 102- 107.
12 ZHONG C , DENG Y , HU W , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44 (21): 7484- 7539.
doi: 10.1039/C5CS00303B
13 BERTHIER C , GORECKI W , MINIER M , et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11 (1): 91- 95.
14 BAUME N , STEEL G , EDWARDS T , et al. No variation of physical performance and perceived exertion after adrenal gland stimulation by synthetic ACTH (Synacthen®) in cyclists[J]. European Journal of Applied Physiology, 2008, 104 (4): 589- 600.
doi: 10.1007/s00421-008-0802-y
15 NAKAYAMA M , WADA S , KUROKI S , et al. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly (ethylene oxide)-based solid polymer electrolytes[J]. Energy & Environmental Science, 2010, 3 (12): 1995- 2002.
16 NOOR S A M , AHMAD A , TALIB I A , et al. Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte[J]. Ionics, 2010, 16 (2): 161- 170.
doi: 10.1007/s11581-009-0385-6
17 ZHANG J , ZHAO J , YUE L , et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5 (24): 1501082.
doi: 10.1002/aenm.201501082
18 RAMESH S , LU S C . Effect of lithium salt concentration on crystallinity of poly (vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes[J]. Journal of Molecular Structure, 2011, 994 (1/3): 403- 409.
19 ANGULAKSHMI N , THOMAS S , NAHM K S , et al. Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries[J]. Ionics, 2011, 17 (5): 407- 414.
doi: 10.1007/s11581-010-0517-z
20 VIRYA A , LIAN K . Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors[J]. Electrochemistry Communications, 2017, 100 (74): 33- 37.
21 VIRYA A , LIAN K . Li2SO4-polyacrylamide polymer electrolytes for 2.0V solid symmetric supercapacitors[J]. Electrochemistry Communications, 2017, 81, 52- 55.
doi: 10.1016/j.elecom.2017.06.003
22 FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly (ethylene oxide)[J]. Polymer, 1973, 14 (11): 589.
23 WRIGHT P V . Electrical conductivity in ionic complexes of poly (ethylene oxide)[J]. British Polymer Journal, 1975, 7 (5): 319- 327.
doi: 10.1002/pi.4980070505
24 ARMAND M . Polymer solid electrolytes-an overview[J]. Solid State Ionics, 1983, 9, 745- 754.
25 SUMBOJA A , GE X , ZHENG G , et al. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst[J]. Journal of Power Sources, 2016, 100 (332): 330- 336.
26 VAQUERO S , PALMA J , ANDERSON M , et al. Mass-balancing of electrodes as a strategy to widen the operating voltage window of carbon/carbon supercapacitors in neutral aqueous electrolytes[J]. Int J Electrochem Sci, 2013, 8, 10293- 10307.
27 NA R , HUO P , ZHANG X , et al. A flexible solid-state supercapacitor based on a poly (aryl ether ketone)-poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications[J]. RSC Advances, 2016, 6 (69): 65186- 65195.
doi: 10.1039/C6RA11202A
28 NGAI K S , RAMESH S , RAMESH K , et al. A review of polymer electrolytes:fundamental, approaches and applications[J]. Ionics, 2016, 22 (8): 1259- 1279.
doi: 10.1007/s11581-016-1756-4
29 RAMESH S , LIEW C W , RAMESH K . Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes[J]. Journal of Non-Crystalline Solids, 2011, 357 (10): 2132- 2138.
doi: 10.1016/j.jnoncrysol.2011.03.004
30 LIEW C W , DURAIRAJ R , RAMESH S . Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt[J]. PloS One, 2014, 9 (7): e102815.
doi: 10.1371/journal.pone.0102815
31 RAMESH S , LIEW C W , MORRIS E , et al. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes[J]. Thermochimica Acta, 2010, 511 (1/2): 140- 146.
32 殷金玲, 张宝宏. 超级电容器工作电解质的研究概况[J]. 应用科技, 2004, 31 (10): 46- 48.
doi: 10.3969/j.issn.1009-671X.2004.10.017
32 YIN J L , ZHANG B H . A review of the working electrolytes for supercapacitor[J]. Applied Science and Technology, 2004, 31 (10): 46- 48.
doi: 10.3969/j.issn.1009-671X.2004.10.017
33 AGRAWAL R C , PANDEY G P . Solid polymer electrolytes:materials designing and all-solid-state battery applications:an overview[J]. Journal of Physics D, 2008, 41 (22): 223001.
doi: 10.1088/0022-3727/41/22/223001
34 魏颖, 张光菊, 郎笑石. 超级电容器关键材料制备及应用[M]. 北京: 化学工业出版社, 2018: 190.
34 WEI Y , ZHANG G J , LANG X S . Preparation and application of key materials for supercapacitors[M]. Beijing: Chemical Industry Press, 2018: 190.
35 WADA H , YOSHIKAWA K , NOHARA S , et al. Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Journal of Power Sources, 2006, 159 (2): 1464- 1467.
doi: 10.1016/j.jpowsour.2005.11.073
36 STEPNIAK I , CISZEWSKI A . Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte[J]. Electrochimica Acta, 2011, 56 (5): 2477- 2482.
doi: 10.1016/j.electacta.2010.11.078
37 VIJAYAKUMAR V , GHOSH M , TORRIS AT A , et al. Water-in-acid gel polymer electrolyte realized through a phosphoric acid-enriched polyelectrolyte matrix toward solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (10): 12630- 12640.
38 XU C , YAN J , QIN Q , et al. All solid supercapacitors based on an anion conducting polymer electrolyte[J]. RSC Advances, 2016, 6 (24): 19826- 19832.
doi: 10.1039/C5RA26848F
39 JIANG M , ZHU J , CHEN C , et al. Poly (vinyl alcohol) borate gel polymer electrolytes prepared by electrodeposition and their application in electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8 (5): 3473- 3481.
40 JIANG M , ZHU J , CHEN C , et al. Superior high-voltage aqueous carbon/carbon supercapacitors operating with in situ electrodeposited polyvinyl alcohol borate gel polymer electrolytes[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16588- 16596.
doi: 10.1039/C6TA07063A
41 LEWANDOWSKI A , OLEJNICZAK A , GALINSKI M , et al. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J]. Journal of Power Sources, 2010, 195 (17): 5814- 5819.
doi: 10.1016/j.jpowsour.2010.03.082
42 NA R , LU N , ZHANG S , et al. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors[J]. Electrochimica Acta, 2018, 290, 262- 272.
doi: 10.1016/j.electacta.2018.09.074
43 ROGERS R D , SEDDON K R . Ionic liquids-solvents of the future?[J]. Science, 2003, 302 (5646): 792- 793.
doi: 10.1126/science.1090313
44 WASSERSCHEID P , KEIM W . Ionic liquids-new "solutions" for transition metal catalysis[J]. Angewandte Chemie International Edition, 2000, 39 (21): 3772- 3789.
45 EFTEKHARI A . Supercapacitors utilising ionic liquids[J]. Energy Storage Materials, 2017, 9, 47- 69.
doi: 10.1016/j.ensm.2017.06.009
46 SINGH R , BHATTACHARYA B , GUPTA M , et al. Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices[J]. International Journal of Hydrogen Energy, 2017, 42 (21): 14602- 14607.
doi: 10.1016/j.ijhydene.2017.04.126
47 NAWAZ A , SHARIF R , RHEE H W , et al. Efficient dye sensitized solar cell and supercapacitor using 1-ethyl 3-methyl imidazolium dicyanamide incorporated PVDF-HFP polymer matrix[J]. Journal of Industrial and Engineering Chemistry, 2016, 33, 381- 384.
doi: 10.1016/j.jiec.2015.10.035
48 JIANG Y, YANG C, ZHANG Q, et al. Reduced graphene oxide and gel polymer based thin film supercapacitor[C]//IEEE SENSORS Council 2016, Washington, DC: IEEE, 2016: 1-3.
49 MUCHAKAYALA R , SONG S , WANG J , et al. Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films[J]. Journal of Industrial and Engineering Chemistry, 2018, 59, 79- 89.
doi: 10.1016/j.jiec.2017.10.009
50 HONG K , YU K J , KIM H J , et al. Electrospun polymer electrolyte nanocomposites for solid-state energy storage[J]. Composites Part B, 2018, 152, 275- 281.
doi: 10.1016/j.compositesb.2018.07.023
51 PANDEY G P , LIU T , HANCOCK C , et al. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors[J]. Journal of Power Sources, 2016, 100 (328): 510- 519.
52 DAGOUSSET L , POGNON G , NGUYEN G T M , et al. Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability[J]. Journal of Power Sources, 2018, 391, 86- 93.
doi: 10.1016/j.jpowsour.2018.04.073
53 NÉGRE L , DAFFOS B , TURQ V , et al. Ionogel-based solid-state supercapacitor operating over a wide range of temperature[J]. Electrochimica Acta, 2016, 206, 490- 495.
doi: 10.1016/j.electacta.2016.02.013
54 TIRUYE G A , MUÑOZ-TORRERO D , PALMA J , et al. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids[J]. Journal of Power Sources, 2016, 100 (326): 560- 568.
55 YUAN J , ANTONIETTI M . Poly (ionic liquid)s:polymers expanding classical property profiles[J]. Polymer, 2011, 52 (7): 1469- 1482.
doi: 10.1016/j.polymer.2011.01.043
56 YU M , HAN Y , CHENG X , et al. Holey tungsten oxynitride nanowires:novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage[J]. Advanced Materials, 2015, 27 (19): 3085- 3091.
doi: 10.1002/adma.201500493
57 ZHANG P , YANG L C , LI L L , et al. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires[J]. Journal of Membrane Science, 2011, 379 (1/2): 80- 85.
58 KIM H S , KUM K S , CHO W I , et al. Electrochemical and physical properties of composite polymer electrolyte of poly (methyl methacrylate) and poly (ethylene glycol diacrylate)[J]. Journal of Power Sources, 2003, 124 (1): 221- 224.
doi: 10.1016/S0378-7753(03)00592-5
59 ZHANG P , ZHANG H P , LI G C , et al. A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte[J]. Electrochemistry Communications, 2008, 10 (7): 1052- 1055.
doi: 10.1016/j.elecom.2008.04.037
60 TARASCON J M , GOZDZ A S , SCHMUTZ C , et al. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ionics, 1996, 86 (60): 49- 54.
61 JIANG Z , CARROLL B , ABRAHAM K M . Studies of some poly(vinylidene fluoride) electrolytes[J]. Electrochimica Acta, 1997, 42 (17): 2667- 2677.
doi: 10.1016/S0013-4686(97)00005-4
62 HE T , JIA R , LANG X , et al. Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor[J]. Journal of the Electrochemical Society, 2017, 164 (13): E379- E384.
doi: 10.1149/2.0631713jes
63 ZHAI W , ZHU H , WANG L , et al. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid[BMIM]BF4 for Lithium ion batteries[J]. Electrochimica Acta, 2014, 133, 623- 630.
doi: 10.1016/j.electacta.2014.04.076
64 YADAV N , MISHRA K , HASHMI S A . Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor[J]. Electrochimica Acta, 2017, 235, 570- 582.
doi: 10.1016/j.electacta.2017.03.101
65 ZHAO D , CHEN C , ZHANG Q , et al. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane[J]. Advanced Energy Materials, 2017, 7 (18): 1700739.
doi: 10.1002/aenm.201700739
66 LIU M , GU M , TIAN Y , et al. Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers:electrospinning synthesis and concentration-modulated upconversion luminescent properties[J]. Journal of Materials Chemistry C, 2017, 5 (16): 4025- 4033.
doi: 10.1039/C7TC00188F
67 XIONG X , LUO W , HU X , et al. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries[J]. Scientific Reports, 2015, 5, 9254.
doi: 10.1038/srep09254
68 CHEN Z , YANG T , SHI H , et al. Single nozzle electrospinning synthesized MoO2@C core shell nanofibers with high capacity and long-term stability for lithium-ion storage[J]. Advanced Materials Interfaces, 2017, 4 (3): 1600816.
doi: 10.1002/admi.201600816
69 NA R , WANG X , LU N , et al. Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste[J]. Electrochimica Acta, 2018, 274, 316- 325.
doi: 10.1016/j.electacta.2018.04.127
70 CAO J H , ZHU B K , XU Y Y . Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes[J]. Journal of Membrane Science, 2006, 281 (1/2): 446- 453.
71 ZHANG J , SUN B , HUANG X , et al. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety[J]. Scientific Reports, 2014, 4, 6007.
72 LI Q , SUN H Y , TAKEDA Y , et al. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources, 2001, 94 (2): 201- 205.
doi: 10.1016/S0378-7753(00)00587-5
73 GERBALDI C , NAIR J R , KULANDAINATHAN M A , et al. Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2014, 2 (26): 9948- 9954.
doi: 10.1039/C4TA01856G
74 NI'MAH Y L , CHENG M Y , CHENG J H , et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278, 375- 381.
doi: 10.1016/j.jpowsour.2014.11.047
75 LIU W , LIU N , SUN J , et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15 (4): 2740- 2745.
doi: 10.1021/acs.nanolett.5b00600
76 WANG W , ALEXANDRIDIS P . Composite polymer electrolytes:nanoparticles affect structure and properties[J]. Polymers, 2016, 8 (11): 387.
doi: 10.3390/polym8110387
77 YADAV N , MISHRA K , HASHMI S A . Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers, 2018, 30 (8): 957- 970.
doi: 10.1177/0954008318774392
78 ORTEGA P F R , TRIGUEIRO J P C , SILVA G G , et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochimica Acta, 2016, 188, 809- 817.
doi: 10.1016/j.electacta.2015.12.056
79 VIJAYAKUMAR V , KHASTGIR D . Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells[J]. Carbohydrate Polymers, 2018, 179, 152- 163.
doi: 10.1016/j.carbpol.2017.09.083
80 YANG X , ZHANG F , ZHANG L , et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications[J]. Advanced Functional Materials, 2013, 23 (26): 3353- 3360.
doi: 10.1002/adfm.201203556
81 KIM K , BAE J , LIM M Y , et al. Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications[J]. Journal of Membrane Science, 2017, 525, 125- 134.
doi: 10.1016/j.memsci.2016.10.038
82 LIU W , LIU N , SUN J , et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15 (4): 2740- 2745.
doi: 10.1021/acs.nanolett.5b00600
83 LIANG B , TANG S , JIANG Q , et al. Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3[J]. Electrochimica Acta, 2015, 169, 334- 341.
doi: 10.1016/j.electacta.2015.04.039
84 LIEW C W . Nanocomposite polymer electrolytes for electric double layer capacitors (EDLCs) application[M]. Florida: CRC Press, 2017: 110- 149.
85 HU J , XIE K , LIU X , et al. Dramatically enhanced ion conductivity of gel polymer electrolyte for supercapacitor via h-BN nanosheets doping[J]. Electrochimica Acta, 2017, 227, 455- 461.
doi: 10.1016/j.electacta.2017.01.045
86 HOU G M , HUANG Y F , RUAN W H , et al. Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor[J]. Journal of Solid State Electrochemistry, 2016, 20 (7): 1903- 1911.
doi: 10.1007/s10008-015-3031-4
87 KAM W , LIEW C W , LIM J Y , et al. Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes[J]. Ionics, 2014, 20 (5): 665- 674.
doi: 10.1007/s11581-013-1012-0
88 ZHOU B , JO Y H , WANG R , et al. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (17): 10354- 10362.
doi: 10.1039/C9TA01214A
89 RYDZEK G , JI Q , LI M , et al. Electrochemical nanoarchitectonics and layer-by-layer assembly:from basics to future[J]. Nano Today, 2015, 10 (2): 138- 167.
doi: 10.1016/j.nantod.2015.02.008
90 FIC K , LOTA G , MELLER M , et al. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors[J]. Energy & Environmental Science, 2012, 5 (2): 5842- 5850.
91 PANDEY K , YADAV P , MUKHOPADHYAY I . Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17 (2): 878- 887.
doi: 10.1039/C4CP04321A
92 ROLDÁN S , BLANCO C , GRANDA M , et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J]. Angewandte Chemie International Edition, 2011, 50 (7): 1699- 1701.
doi: 10.1002/anie.201006811
93 YU H , WU J , FAN L , et al. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor[J]. Journal of Power Sources, 2012, 198, 402- 407.
doi: 10.1016/j.jpowsour.2011.09.110
94 ZHONG J , FAN L Q , WU X , et al. Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes[J]. Electrochimica Acta, 2015, 166, 150- 156.
doi: 10.1016/j.electacta.2015.03.114
95 YU F , HUANG M , WU J , et al. A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors[J]. Journal of Applied Polymer Science, 2014, 131 (2): 39784.
96 YU H , WU J , FAN L , et al. Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte[J]. Electrochimica Acta, 2011, 56 (20): 6881- 6886.
doi: 10.1016/j.electacta.2011.06.039
97 YU H , WU J , LIN J , et al. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte[J]. Chem Phys Chem, 2013, 14 (2): 394- 399.
doi: 10.1002/cphc.201200816
98 WU J , YU H , FAN L , et al. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor[J]. Journal of Materials Chemistry, 2012, 22 (36): 19025- 19030.
doi: 10.1039/c2jm33856d
99 CHODANKAR N R , DUBAL D P , LOKHANDE A C , et al. An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films[J]. Scientific Reports, 2016, 6, 39205.
doi: 10.1038/srep39205
100 SENTHILKUMAR S T , SELVAN R K , MELO J S . Redox additive/active electrolytes:a novel approach to enhance the performance of supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1 (40): 12386- 12394.
doi: 10.1039/c3ta11959a
101 TU Q M , FAN L Q , PAN F , et al. Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors[J]. Electrochimica Acta, 2018, 268 (60): 562- 568.
102 SUN K , RAN F , ZHAO G , et al. High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte[J]. RSC Advances, 2016, 6 (60): 55225- 55232.
doi: 10.1039/C6RA06797B
103 KARAMAN B , BOZKURT A . Enhanced performance of supercapacitor based on boric acid doped PVA-H2SO4 gel polymer electrolyte system[J]. International Journal of Hydrogen Energy, 2018, 43 (12): 6229- 6237.
doi: 10.1016/j.ijhydene.2018.02.032
104 VEERASUBRAMANI G K , KRISHNAMOORTHY K , PAZHAMALAI P , et al. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte[J]. Carbon, 2016, 105, 638- 648.
doi: 10.1016/j.carbon.2016.05.008
105 GAO Z , ZHANG L , CHANG J , et al. Catalytic electrode-redox electrolyte supercapacitor system with enhanced capacitive performance[J]. Chemical Engineering Journal, 2018, 335, 590- 599.
doi: 10.1016/j.cej.2017.11.037
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[4] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[5] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[6] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[7] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[8] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[9] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[10] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[11] 吴浩, 邱锦, 陈卫星, 杨晶晶, 马爱洁, 蔡力帆. 水铝英石/PEO/LiClO4复合固态聚合物电解质中组分相互作用对PEO结晶的影响[J]. 材料工程, 2021, 49(1): 35-43.
[12] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[13] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[14] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[15] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn