Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 49-55    DOI: 10.11868/j.issn.1001-4381.2019.000347
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纤维环氧树脂复合材料热响应预报方法
李翰1,2, 樊茂华1,2, 王纳斯丹1,2, 范保鑫1,2, 冯振宇1,2
1. 中国民航大学 适航学院, 天津 300300;
2. 民航航空器适航审定技术重点实验室, 天津 300300
Thermal response prediction method for carbon fiber epoxy resin composites
LI Han1,2, FAN Mao-hua1,2, WANG Na-si-dan1,2, FAN Bao-xin1,2, FENG Zhen-yu1,2
1. College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
2. Key Laboratory of Civil Aircraft Airworthiness Technology, CAAC, Tianjin 300300, China
全文: PDF(2204 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为研究碳纤维环氧树脂复合材料在火灾环境下的热响应,考虑其在火灾环境下的热解过程,建立非线性热响应方程组,利用有限差分法计算分析单侧热流作用下的材料内部温度-时间历程与炭化规律。结果表明:建立的热响应方程组可以有效预测碳纤维环氧树脂的温度-时间历程,与实验值吻合较好;随着加热时间延长,炭化层范围逐渐扩大,温度趋于稳定,材料温度-深度分布由非线性转变为线性;随着深度增加,碳纤维环氧树脂复合材料温升速率减小,达到热解所需的时间更长,炭化过程变慢,且单位温度的密度变化量峰值随深度增加向低温方向移动;热解反应区中不同深度位置的材料剩余质量分数在同一温度下不同,深度越大剩余质量分数越小,炭化程度越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李翰
樊茂华
王纳斯丹
范保鑫
冯振宇
关键词 碳纤维/环氧树脂热响应炭化热分解    
Abstract:In order to study the thermal response of carbon fiber epoxy resin composites in fire, considering the pyrolysis process in fire, the nonlinear thermal response equations were established, and a finite difference method was used to calculate and analyse the material's internal time-dependent temperature progressions and carbonization subjected to one-sided heat flux. The theoretical results from the established thermal response equations were validated against experimental data and a good agreement was observed.As the heating time increases, the carbonized layer range gradually expands, the temperature changes tend to be stable, and the distribution of material temperature with depth position is changed from nonlinear to linear. With the increment of the depth, temperature rise rate is decreased, the time of carbon fiber epoxy resin composites reaching the pyrolysis temperature is increased, the carbonization process is slowed down, and the peak change of density with temperature moves toward the low temperature with the increased depth. The residual mass fraction of materials at different depth in the pyrolysis reaction zone is slightly different at the same temperature, the residual mass fraction is decreased and the degree of carbonization is increased as the depth increases.
Key wordscarbon fiber/epoxy resin    thermal response    carbonization    thermal decomposition
收稿日期: 2019-04-11      出版日期: 2020-05-28
中图分类号:  TB332  
通讯作者: 李翰(1986-),男,助理研究员,硕士,主要从事复合材料热强度方面的研究,联系地址:天津市东丽区津北公路2898号中国民航大学适航学院(300300),E-mail:cauc_lihan@126.com     E-mail: cauc_lihan@126.com
引用本文:   
李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
LI Han, FAN Mao-hua, WANG Na-si-dan, FAN Bao-xin, FENG Zhen-yu. Thermal response prediction method for carbon fiber epoxy resin composites. Journal of Materials Engineering, 2020, 48(5): 49-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000347      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/49
[1] YUAN J M,FAN Z F,YANG Q C,et al.Surface modification of carbon fibers by microwave etching for epoxy resin composite[J].Composites Science and Technology,2018,164:222-228.
[2] MISHRA S,KATTI P,KUMAR S,et al.Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation[J].Chemical Engineering Journal,2019,357:384-394.
[3] ZHANG H Y,LV H R,KODUR V,et al.Comparative fire behavior of geopolymer and epoxy resin bonded fiber sheet strengthened RC beams[J].Engineering Structures,2018,155:222-234.
[4] CIESIELSKI M,BURK B,HEINZMANN C,et al. Fire-retardant high-performance epoxy-based materials[M]//Novel Fire Retardant Polymers & Composite Materials. Cambridge, UK:Woodhead Publishing,2017:3-51.
[5] 吴志刚.碳纤维增强环氧树脂基复合材料的研究进展[J].天津科技,2018,45(7):53-58. WU Z G.Carbon fiber-reinforced epoxy resin composites:a review of research progress[J].Tianjin Science &Technology,2018,45(7):53-58.
[6] 包建文,蒋诗才,张代军.航空碳纤维树脂基复合材料的发展现状和趋势[J].科技导报,2018,36(19):52-63. BAO J W,JIANG S C,ZHANG D J.Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J].Science & Technology Review,2018,36(19):52-63.
[7] MAZZOCCHETTI L,BENELLI T,MACCAFERRI E,et al.Poly-m-aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites[J].Composites:Part B,2018,145:252-260.
[8] ZHANG Z,WANG C,HUANG G,et al.Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR[J].Journal of Hazardous Materials,2018,357:73-80.
[9] FENG Y Z,HE C G,WEN Y F,et al.Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous,nitrogen and silicon elements[J].Composites:Part A,2017,103:74-83.
[10] 段敏鸽,刘存喜.飞机复合材料结构适航符合性验证思路研究[J].航空科学技术,2015(3):54-58. DUAN M G,LIU C X.The Study on airworthiness verification of composite aircraft structure[J].Aeronautical Science & Technology,2015(3):54-58.
[11] TREBILCOCK R,孙立.波音787起火事故引发的复合材料修理思考[J].航空维修与工程,2014(4):39-40. TREBILCOCK R,SUN L.B787 fire repair boosts composites confidence[J].Aviation Maintenance & Engineering,2014(4):39-40.
[12] McGURN M,DESJARDIN P,DODD A.Thermal modeling of carbon-epoxy laminates in fire environments[J].Fire Safety Science,2011,10:1193-1205.
[13] McKINNON M B,DING Y,STOLIAROV S I,et al.Pyrolysis model for a carbon fiber/epoxy structural aerospace composite[J].Journal of Fire Sciences,2017,35(1):36-61.
[14] RIZK G,LEGRAND V,KHALIL K,et al.Durability of sandwich composites under extreme conditions:towards the prediction of fire resistance properties based on thermo-mechanical measurements[J].Composite Structures,2017,186:233-245.
[15] 赵玉芬,宋磊磊,李嘉禄,等.三维机织碳纤维/环氧树脂复合材料在两种测量方法下的热响应机制对比[J].复合材料学报,2018,35(1):103-109. ZHAO Y F,SONG L L,LI J L,et al.Comparison of thermal response mechanisms for three dimensional woven carbon fiber/epoxy resin composites under two measurement methods[J].Acta Materiae Compositae Sinica,2018,35(1):103-109.
[16] 沈蓉影.碳纤维复合材料导热系数研究[J].材料工程,1993(3):4-5. SHEN R Y.Study on thermal conductivity of carbon fiber composites[J].Journal of Materials Engineering,1993(3):4-5.
[17] ACEM Z,BRISSINGER D,COLLIN A,et al.Surface temperature of carbon composite samples during thermal degradation[J].International Journal of Thermal Sciences,2017,112:427-438.
[18] GIBSON A G,WU Y S,CHANDLER H W,et al.A model for the thermal performance of thick composite laminates in hydrocarbon fires[J].Oil & Gas Science & Technology,2006,50(1):69-74.
[19] HENDERSON J B,WIEBELT J A,TANT M R.A model for the thermal response of polymer composite materials with experimental verification[J].Journal of Composite Materials,1985,19(6):579-595.
[20] 李翰,樊茂华,冯振宇,等.玻璃纤维/酚醛复合材料热响应预报方法[J].复合材料学报,2019,36(6):1457-1463 LI H,FAN M H,FENG Z Y,et al.Forecasting method for thermal response of glass fiber/phenolic composites[J].Acta Materiae Compositae Sinica,2019,36(6):1457-1463.
[21] 马百平,李翰,邹田春,等.运输类飞机的机身抗烧穿性适航要求解析[J].航空工程进展,2017,8(3):308-314. MA B P,LI H,ZOU T C,et al.Investigation on fuselage burn-through resistance of transport category airplanes[J].Advances in Aeronautical Science and Engineering,2017,8(3):308-314.
[22] MOURITZ A P,GIBSON A G.Fire properties of polymer composite materials[M]//Netherlands:Springer Science & Business Media,2007:133-138.
[23] PAULINE T,FABIENNE S,SOPHIE D,et al.Modelling behaviour of a carbon epoxy composite exposed to fire:part Ⅰ-characterisation of thermophysical properties[J].Materials,2017,10(5):10050494.
[24] PAULINE T,FABIENNE S,SOPHIE D,et al.Modelling behaviour of a carbon epoxy composite exposed to fire:part Ⅱ-comparison with experimental results[J].Materials,2017,10(5):10050470.
[25] KANDARE E,KANDOLA B K,McCARTHY E D,et al.Fiber-reinforced epoxy composites exposed to high temperature environments part Ⅱ:modeling mechanical property degradation[J].Journal of Composite Materials,2011,45(14):1511-1521.
[26] 陈敏孙,江厚满,刘泽金.玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J].强激光与粒子束,2010,22(9):1969-1972. CHEN M S,JIANG H M,LIU Z J.Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J].High Power Laser and Particle Beams,2010,22(9):1969-1972.
[1] 曾凡达, 李纲. 花状CdO微球的制备及其对高氯酸铵热分解的催化性能[J]. 材料工程, 2020, 48(6): 91-97.
[2] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[5] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[6] 谭德新, 徐远, 王艳丽, 疏瑞文, 邢宏龙. 聚二苯基二苯乙炔基硅烷树脂的制备与非等温热分解[J]. 材料工程, 2017, 45(7): 77-83.
[7] 谈玲华, 徐建华, 寇波, 杭祖圣, 石丽丽, 王钧. g-C3N4/NiO复合材料的制备及其对AP热分解的影响[J]. 材料工程, 2016, 44(11): 96-100.
[8] 王新星, 张宝林, 王行展, 冯凌云. 雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子[J]. 材料工程, 2014, 0(8): 51-54.
[9] 张增志, 杜红梅, 杨春卫. 柱撑蒙脱土的真空脱氢炭化及孔结构变化研究[J]. 材料工程, 2014, 0(11): 79-84.
[10] 张东卿, 史景利, 郭全贵, 宋燕, 刘朗. 炭化过程中中空酚醛纤维结构性能的变化[J]. 材料工程, 2011, 0(9): 72-76.
[11] 王桂龙, 赵国群, 李辉平, 管延锦. 基于CAE的大型LCD注塑面板变模温设计与分析[J]. 材料工程, 2009, 0(9): 24-28.
[12] 栗晓飞, 张琦, 项民. 浸泡腐蚀对复合材料导电性能和力学性能的影响[J]. 材料工程, 2009, 0(2): 1-5.
[13] 王小宪, 李铁虎, 冀勇斌, 金伟. 有序介孔炭分子筛膜的制备与表征[J]. 材料工程, 2008, 0(11): 41-45.
[14] 武光明, 王怡, 靳力, 韩彬, 邢光建, 江伟. 用甩胶喷雾热分解方法制备羧酸铕配合物光致发光薄膜的研究[J]. 材料工程, 2008, 0(10): 46-49.
[15] 韩彬, 武光明, 邢光建, 王怡, 江伟, 李东临. 玻璃衬底上氮-铟共掺ZnO的制备及表征[J]. 材料工程, 2008, 0(10): 283-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn