Thermal response prediction method for carbon fiber epoxy resin composites
Han LI1,2,*(), Mao-hua FAN1,2, Na-si-dan WANG1,2, Bao-xin FAN1,2, Zhen-yu FENG1,2
1 College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China 2 Key Laboratory of Civil Aircraft Airworthiness Technology, CAAC, Tianjin 300300, China
In order to study the thermal response of carbon fiber epoxy resin composites in fire, considering the pyrolysis process in fire, the nonlinear thermal response equations were established, and a finite difference method was used to calculate and analyse the material's internal time-dependent temperature progressions and carbonization subjected to one-sided heat flux. The theoretical results from the established thermal response equations were validated against experimental data and a good agreement was observed.As the heating time increases, the carbonized layer range gradually expands, the temperature changes tend to be stable, and the distribution of material temperature with depth position is changed from nonlinear to linear. With the increment of the depth, temperature rise rate is decreased, the time of carbon fiber epoxy resin composites reaching the pyrolysis temperature is increased, the carbonization process is slowed down, and the peak change of density with temperature moves toward the low temperature with the increased depth. The residual mass fraction of materials at different depth in the pyrolysis reaction zone is slightly different at the same temperature, the residual mass fraction is decreased and the degree of carbonization is increased as the depth increases.
YUAN J M , FAN Z F , YANG Q C , et al. Surface modification of carbon fibers by microwave etching for epoxy resin composite[J]. Composites Science and Technology, 2018, 164, 222- 228.
doi: 10.1016/j.compscitech.2018.05.043
2
MISHRA S , KATTI P , KUMAR S , et al. Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation[J]. Chemical Engineering Journal, 2019, 357, 384- 394.
doi: 10.1016/j.cej.2018.09.119
3
ZHANG H Y , LV H R , KODUR V , et al. Comparative fire behavior of geopolymer and epoxy resin bonded fiber sheet strengthened RC beams[J]. Engineering Structures, 2018, 155, 222- 234.
doi: 10.1016/j.engstruct.2017.11.027
4
CIESIELSKI M, BURK B, HEINZMANN C, et al. Fire-retardant high-performance epoxy-based materials[M]//Novel Fire Retardant Polymers & Composite Materials. Cambridge, UK: Woodhead Publishing, 2017: 3-51.
BAO J W , JIANG S C , ZHANG D J . Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36 (19): 52- 63.
7
MAZZOCCHETTI L , BENELLI T , MACCAFERRI E , et al. Poly-m-aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites[J]. Composites:Part B, 2018, 145, 252- 260.
doi: 10.1016/j.compositesb.2018.03.036
8
ZHANG Z , WANG C , HUANG G , et al. Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR[J]. Journal of Hazardous Materials, 2018, 357, 73- 80.
doi: 10.1016/j.jhazmat.2018.05.057
9
FENG Y Z , HE C G , WEN Y F , et al. Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements[J]. Composites:Part A, 2017, 103, 74- 83.
doi: 10.1016/j.compositesa.2017.09.014
DUAN M G , LIU C X . The Study on airworthiness verification of composite aircraft structure[J]. Aeronautical Science & Technology, 2015, (3): 54- 58.
doi: 10.3969/j.issn.1007-5453.2015.03.012
TREBILCOCK R , SUN L . B787 fire repair boosts composites confidence[J]. Aviation Maintenance & Engineering, 2014, (4): 39- 40.
doi: 10.3969/j.issn.1672-0989.2014.04.018
12
McGURN M , DESJARDIN P , DODD A . Thermal modeling of carbon-epoxy laminates in fire environments[J]. Fire Safety Science, 2011, 10, 1193- 1205.
doi: 10.3801/IAFSS.FSS.10-1193
13
McKINNON M B , DING Y , STOLIAROV S I , et al. Pyrolysis model for a carbon fiber/epoxy structural aerospace composite[J]. Journal of Fire Sciences, 2017, 35 (1): 36- 61.
doi: 10.1177/0734904116679422
14
RIZK G , LEGRAND V , KHALIL K , et al. Durability of sandwich composites under extreme conditions:towards the prediction of fire resistance properties based on thermo-mechanical measurements[J]. Composite Structures, 2017, 186, 233- 245.
ZHAO Y F , SONG L L , LI J L , et al. Comparison of thermal response mechanisms for three dimensional woven carbon fiber/epoxy resin composites under two measurement methods[J]. Acta Materiae Compositae Sinica, 2018, 35 (1): 103- 109.
16
沈蓉影. 碳纤维复合材料导热系数研究[J]. 材料工程, 1993, (3): 4- 5.
16
SHEN R Y . Study on thermal conductivity of carbon fiber composites[J]. Journal of Materials Engineering, 1993, (3): 4- 5.
17
ACEM Z , BRISSINGER D , COLLIN A , et al. Surface temperature of carbon composite samples during thermal degradation[J]. International Journal of Thermal Sciences, 2017, 112, 427- 438.
doi: 10.1016/j.ijthermalsci.2016.11.007
18
GIBSON A G , WU Y S , CHANDLER H W , et al. A model for the thermal performance of thick composite laminates in hydrocarbon fires[J]. Oil & Gas Science & Technology, 2006, 50 (1): 69- 74.
19
HENDERSON J B , WIEBELT J A , TANT M R . A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of Composite Materials, 1985, 19 (6): 579- 595.
doi: 10.1177/002199838501900608
LI H , FAN M H , FENG Z Y , et al. Forecasting method for thermal response of glass fiber/phenolic composites[J]. Acta Materiae Compositae Sinica, 2019, 36 (6): 1457- 1463.
MA B P , LI H , ZOU T C , et al. Investigation on fuselage burn-through resistance of transport category airplanes[J]. Advances in Aeronautical Science and Engineering, 2017, 8 (3): 308- 314.
22
MOURITZ A P, GIBSON A G.Fire properties of polymer composite materials[M]//Netherlands: Springer Science & Business Media, 2007: 133-138.
23
PAULINE T , FABIENNE S , SOPHIE D , et al. Modelling behaviour of a carbon epoxy composite exposed to fire:part Ⅰ-characterisation of thermophysical properties[J]. Materials, 2017, 10 (5): 10050494.
24
PAULINE T , FABIENNE S , SOPHIE D , et al. Modelling behaviour of a carbon epoxy composite exposed to fire:part Ⅱ-comparison with experimental results[J]. Materials, 2017, 10 (5): 10050470.
25
KANDARE E , KANDOLA B K , McCARTHY E D , et al. Fiber-reinforced epoxy composites exposed to high temperature environments part Ⅱ:modeling mechanical property degradation[J]. Journal of Composite Materials, 2011, 45 (14): 1511- 1521.
doi: 10.1177/0021998310385024
CHEN M S , JIANG H M , LIU Z J . Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22 (9): 1969- 1972.