Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 98-105    DOI: 10.11868/j.issn.1001-4381.2019.000381
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CuO/CuxSy八面体核壳结构的合成及其电化学性能
王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁
郑州大学 物理工程学院 材料物理教育部重点实验室, 郑州 450001
Synthesis and electrochemical performance of CuO/CuxSy octahedral core-shell structure
WANG Zhen-wei, YANG Xiao-shan, ZHENG Ya-yun, ZHANG Ying-jiu, XU Jie
Key Laboratory of Material Physics(Ministry of Education), School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
全文: PDF(5015 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在室温下通过离子交换过程,快速制备双壳层中空氧化铜/硫化铜(CuO/CuxSy)八面体材料。通过调节硫化时间,双壳层中空CuO/CuxSy八面体的形貌和硫化物/氧化物组成发生改变,进而影响其电化学性能。通过XRD,SEM,TEM和XPS对该八面体的形貌结构进行测试分析。测试表明该中空结构具有相互交叉的CuxSy纳米片构成的外壳和位于八面体内部的CuO核层部分。双壳层中空CuO/CuxSy八面体的独特结构和CuO,CuxSy之间的协同效应有利于材料的电化学过程。当硫化时间为6 h时双壳层中空CuO/CuxSy八面体在1 A·g-1的电流密度下具有高达413.6 F·g-1的比电容,并且其在20 A·g-1的电流密度下具有较好的倍率性能和循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振威
杨晓闪
郑亚云
张迎九
徐洁
关键词 超级电容器氧化铜硫化铜核壳结构    
Abstract:A copper oxide/copper sulphide (CuO/CuxSy)composite was simply synthesized through an ion-exchange process just at room temperature, owning a unique octahedral core-shell structure. By adjusting reaction time of sulfuration, the morphology and composition of CuO/CuxSy octahedral core-shell material were changed, which has an important influence on the electrochemical performance. XRD, SEM, TEM and XPS were conducted to analysize the morphology and structure of CuO/CuxSy composite. It shows the hollow composite possesses a shell layer with the interconnected CuxSy nanosheets and a CuO core-layer in the octahedron.The unique core-shell octahedral structure and the synergy between CuO and CuxSy are beneficial for the electrochemical process. When the reaction time is 6 h, as-obtained CuO/CuxSy core-shell octahedral material has a high specific capacity of 413.6 F·g-1 at a current density of 1 A·g-1, and better rate performance and stability even at a higher current density of 20 A·g-1.
Key wordssupercapacitor    copper oxide    copper sulfide    core-shell structure
收稿日期: 2019-04-23      出版日期: 2020-06-15
中图分类号:  O646  
通讯作者: 徐洁(1991-),女,讲师,博士,研究方向为复合电极材料的制备及性能研究,联系地址:河南省郑州市二七区大学北路郑州大学南校区5号教学楼(450001), xujie@zzu.edu.cn     E-mail: xujie@zzu.edu.cn
引用本文:   
王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
WANG Zhen-wei, YANG Xiao-shan, ZHENG Ya-yun, ZHANG Ying-jiu, XU Jie. Synthesis and electrochemical performance of CuO/CuxSy octahedral core-shell structure. Journal of Materials Engineering, 2020, 48(6): 98-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000381      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/98
[1] GENG P,ZHENG S,TANG H,et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Advanced Energy Materials,2018,8:1703259.
[2] WANG F,WU X,YUAN X,et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews,2017,46:6816-6854.
[3] OUYANG Y,YE H,XIA X,et al. Hierarchical electrodes of NiCo2S4nanosheets anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry:A,2019:3228-3237.
[4] ZHENG Y,XU J,YANG X,et al. Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor[J]. Chemical Engineering Journal,2018,333:111-121.
[5] YANG Z,XU F,ZHANG W,et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application[J]. Journal of Power Sources,2014,246(3):24-31.
[6] DU X,XIA C,LI Q,et al. Facile fabrication of CuxO composite nanoarray on nanoporous copper assupercapacitor electrode[J]. Materials Letters,2018,233:170-173.
[7] PANDIAN A S,KALIYAPPAN K. Single-step microwave mediated synthesis of CoS2 anode material for high rate hybrid supercapacitors[J]. Journal of Materials Chemistry A,2014,2(29):11099-11106.
[8] PENG S,LI L,TAN H,et al. Hollow spheres: MS2 (M=Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics [J]. Advanced Functional Materials,2014,24(15):2155-2162.
[9] FU W,HAN W,ZHA H,et al. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors[J]. Physical Chemistry Chemical Physics,2016,18(35):24471-24476.
[10] CHEN K,XUE D. Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials[J]. Journal of Physical Chemistry C,2013,117(44):22576-22583.
[11] DUBAL D P,GUND G S,HOLZE R,et al. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors[J]. Journal of Power Sources,2013,242(35):687-698.
[12] YU X Y,YU L,SHEN L,SONG X,et al. General formation of MS(M=Ni,Cu,Mn) box-in-box hollow structures with enhanced pseudocapacitive properties[J]. Advanced Functional Materials,2015,24(47):7440-7446.
[13] DONG Z H,LAI X Y,HALPERT JE,et al. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency[J]. Advanced Materials,2012,24(8):1046-1049.
[14] GUAN B Y,YU L,WANG X,et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced Materials,2016,29(6):1605051.
[15] ZHANG G Q,WU H B,HOSTER H E,et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[J]. Energy & Environmental Science,2012,5(11):9453.
[16] HE D,WANG G,LIU G,et al. Construction of leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors[J].Dalton Transactions,2017,46(10):3318-3324.
[17] DONG H,XING S,SUN B,et al. Design and construction of three-dimensional flower-like CuO hierarchical nanostructureson copper foam for high performance supercapacitor[J]. Electrochimica Acta,2016,210:639-645.
[18] LI Y,XUE W,QI Y,et al. Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors[J]. Electrochimica Acta,2017,234:63-70.
[19] ZHOU L,HE Y,JIA C,et al. Construction of hierarchical CuO/Cu2O@NiCo2S4 nanowire arrays on copper foam for high performance supercapacitor electrodes[J]. Nanomaterials,2017,7(9):273.
[20] YUAN D,GANG H,ZHANG F,et al. Facile synthesis of CuS/rGO composite with enhanced electrochemical lithium-storage properties through microwave-assisted hydrothermal method[J]. Electrochimica Acta,2016,203:238-245.
[21] HENG B, QING C,SUN D,et al. Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance[J]. RSC Advances,2013,3(36):15719.
[22] HUANG K J, ZHANG J Z, FAN Y. One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials[J]. Journal of Alloys and Compounds,2015,625:158-163.
[1] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[2] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[3] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[4] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[5] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[6] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[7] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[8] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[9] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[10] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[11] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[12] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[13] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[14] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
[15] 于美, 李新杰, 马玉骁, 刘瑞丽, 刘建华, 李松梅. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44(5): 101-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn