Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (6): 98-105    DOI: 10.11868/j.issn.1001-4381.2019.000381
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
CuO/CuxSy八面体核壳结构的合成及其电化学性能
王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁()
郑州大学 物理工程学院 材料物理教育部重点实验室, 郑州 450001
Synthesis and electrochemical performance of CuO/CuxSy octahedral core-shell structure
Zhen-wei WANG, Xiao-shan YANG, Ya-yun ZHENG, Ying-jiu ZHANG, Jie XU()
Key Laboratory of Material Physics(Ministry of Education), School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
全文: PDF(5015 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在室温下通过离子交换过程,快速制备双壳层中空氧化铜/硫化铜(CuO/CuxSy)八面体材料。通过调节硫化时间,双壳层中空CuO/CuxSy八面体的形貌和硫化物/氧化物组成发生改变,进而影响其电化学性能。通过XRD,SEM,TEM和XPS对该八面体的形貌结构进行测试分析。测试表明该中空结构具有相互交叉的CuxSy纳米片构成的外壳和位于八面体内部的CuO核层部分。双壳层中空CuO/CuxSy八面体的独特结构和CuO,CuxSy之间的协同效应有利于材料的电化学过程。当硫化时间为6 h时双壳层中空CuO/CuxSy八面体在1 A·g-1的电流密度下具有高达413.6 F·g-1的比电容,并且其在20 A·g-1的电流密度下具有较好的倍率性能和循环稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振威
杨晓闪
郑亚云
张迎九
徐洁
关键词 超级电容器氧化铜硫化铜核壳结构    
Abstract

A copper oxide/copper sulphide (CuO/CuxSy)composite was simply synthesized through an ion-exchange process just at room temperature, owning a unique octahedral core-shell structure. By adjusting reaction time of sulfuration, the morphology and composition of CuO/CuxSy octahedral core-shell material were changed, which has an important influence on the electrochemical performance. XRD, SEM, TEM and XPS were conducted to analysize the morphology and structure of CuO/CuxSy composite. It shows the hollow composite possesses a shell layer with the interconnected CuxSy nanosheets and a CuO core-layer in the octahedron.The unique core-shell octahedral structure and the synergy between CuO and CuxSy are beneficial for the electrochemical process. When the reaction time is 6 h, as-obtained CuO/CuxSy core-shell octahedral material has a high specific capacity of 413.6 F·g-1 at a current density of 1 A·g-1, and better rate performance and stability even at a higher current density of 20 A·g-1.

Key wordssupercapacitor    copper oxide    copper sulfide    core-shell structure
收稿日期: 2019-04-23      出版日期: 2020-06-15
中图分类号:  O646  
基金资助:国家自然科学基金青年项目(51602289)
通讯作者: 徐洁     E-mail: xujie@zzu.edu.cn
作者简介: 徐洁(1991-), 女, 讲师, 博士, 研究方向为复合电极材料的制备及性能研究, 联系地址:河南省郑州市二七区大学北路郑州大学南校区5号教学楼(450001), E-mail:xujie@zzu.edu.cn
引用本文:   
王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
Zhen-wei WANG, Xiao-shan YANG, Ya-yun ZHENG, Ying-jiu ZHANG, Jie XU. Synthesis and electrochemical performance of CuO/CuxSy octahedral core-shell structure. Journal of Materials Engineering, 2020, 48(6): 98-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000381      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/98
Fig.1  用CTAB作为表面活性剂制备Cu-Pre(a)和不同反应时间下双壳层中空CuO/CuxSy八面体(b)的XRD图谱
Fig.2  水浴法制备的前驱体的SEM图
(a)低倍;(b)高倍
Fig.3  在不同反应时间下制备的双壳层中空CuO/CuxSy八面体材料的SEM图像
Fig.4  双壳层中空CuO/CuxSy八面体的TEM图和EDS图谱
(a)八面体CuO/CuxSy的TEM图;(b),(c)不同衍射方向上八面体CUO/CuxSy的HRTEM图;(d)前驱体和CuO/CuxSy的EDS图谱
Fig.5  CuO/CuxSy八面体的XPS谱图
(a)总谱图;(b)Cu2p;(c)O1s;(d)S2p
Fig.6  双壳层中空CuO/CuxSy八面体的电化学性能表征图
(a)不同时间对应的CV曲线;(b)不同时间对应的GCD曲线;(c)不同反应时间对应的比电容值;(d)不同扫描速率下的CV曲线;(e)在不同电流密度下的GCD曲线;(f)在不同电流密度下的比电容值
Fig.7  CuO/CuxSy的阻抗图谱(a)和硫化时间为6 h的CuO/CuxSy在20 A·g-1电流密度下的循环稳定性曲线(b)
1 GENG P , ZHENG S , TANG H , et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8, 1703259.
doi: 10.1002/aenm.201703259
2 WANG F , WU X , YUAN X , et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46, 6816- 6854.
doi: 10.1039/C7CS00205J
3 OUYANG Y , YE H , XIA X , et al. Hierarchical electrodes of NiCo2S4nanosheets anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry:A, 2019, 3228- 3237.
4 ZHENG Y , XU J , YANG X , et al. Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2018, 333, 111- 121.
doi: 10.1016/j.cej.2017.09.155
5 YANG Z , XU F , ZHANG W , et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application[J]. Journal of Power Sources, 2014, 246 (3): 24- 31.
6 DU X , XIA C , LI Q , et al. Facile fabrication of CuxO composite nanoarray on nanoporous copper assupercapacitor electrode[J]. Materials Letters, 2018, 233, 170- 173.
doi: 10.1016/j.matlet.2018.09.009
7 PANDIAN A S , KALIYAPPAN K . Single-step microwave mediated synthesis of CoS2 anode material for high rate hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (29): 11099- 11106.
doi: 10.1039/C4TA01633E
8 PENG S , LI L , TAN H , et al. Hollow spheres: MS2 (M=Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics[J]. Advanced Functional Materials, 2014, 24 (15): 2155- 2162.
doi: 10.1002/adfm.201303273
9 FU W , HAN W , ZHA H , et al. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors[J]. Physical Chemistry Chemical Physics, 2016, 18 (35): 24471- 24476.
doi: 10.1039/C6CP02228F
10 CHEN K , XUE D . Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials[J]. Journal of Physical Chemistry C, 2013, 117 (44): 22576- 22583.
11 DUBAL D P , GUND G S , HOLZE R , et al. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors[J]. Journal of Power Sources, 2013, 242 (35): 687- 698.
12 YU X Y , YU L , SHEN L , SONG X , et al. General formation of MS(M=Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties[J]. Advanced Functional Materials, 2015, 24 (47): 7440- 7446.
13 DONG Z H , LAI X Y , HALPERT JE , et al. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency[J]. Advanced Materials, 2012, 24 (8): 1046- 1049.
doi: 10.1002/adma.201104626
14 GUAN B Y , YU L , WANG X , et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced Materials, 2016, 29 (6): 1605051.
15 ZHANG G Q , WU H B , HOSTER H E , et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[J]. Energy & Environmental Science, 2012, 5 (11): 9453.
16 HE D , WANG G , LIU G , et al. Construction of leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors[J]. Dalton Transactions, 2017, 46 (10): 3318- 3324.
doi: 10.1039/C7DT00287D
17 DONG H , XING S , SUN B , et al. Design and construction of three-dimensional flower-like CuO hierarchical nanostructureson copper foam for high performance supercapacitor[J]. Electrochimica Acta, 2016, 210, 639- 645.
doi: 10.1016/j.electacta.2016.05.196
18 LI Y , XUE W , QI Y , et al. Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors[J]. Electrochimica Acta, 2017, 234, 63- 70.
doi: 10.1016/j.electacta.2017.02.167
19 ZHOU L , HE Y , JIA C , et al. Construction of hierarchical CuO/Cu2O@NiCo2S4 nanowire arrays on copper foam for high performance supercapacitor electrodes[J]. Nanomaterials, 2017, 7 (9): 273.
doi: 10.3390/nano7090273
20 YUAN D , GANG H , ZHANG F , et al. Facile synthesis of CuS/rGO composite with enhanced electrochemical lithium-storage properties through microwave-assisted hydrothermal method[J]. Electrochimica Acta, 2016, 203, 238- 245.
doi: 10.1016/j.electacta.2016.04.042
21 HENG B , QING C , SUN D , et al. Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance[J]. RSC Advances, 2013, 3 (36): 15719.
doi: 10.1039/c3ra42869a
22 HUANG K J , ZHANG J Z , FAN Y . One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials[J]. Journal of Alloys and Compounds, 2015, 625, 158- 163.
doi: 10.1016/j.jallcom.2014.11.137
[1] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[2] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[3] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[4] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[5] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[6] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[7] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 余宛键, 耿鹏, 文玫, 陈志钢. 明胶辅助共沉淀法合成硫化铜纳米材料及其光热消融癌细胞[J]. 材料工程, 2020, 48(12): 68-74.
[10] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[11] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[12] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[13] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[14] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[15] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn