A copper oxide/copper sulphide (CuO/CuxSy)composite was simply synthesized through an ion-exchange process just at room temperature, owning a unique octahedral core-shell structure. By adjusting reaction time of sulfuration, the morphology and composition of CuO/CuxSy octahedral core-shell material were changed, which has an important influence on the electrochemical performance. XRD, SEM, TEM and XPS were conducted to analysize the morphology and structure of CuO/CuxSy composite. It shows the hollow composite possesses a shell layer with the interconnected CuxSy nanosheets and a CuO core-layer in the octahedron.The unique core-shell octahedral structure and the synergy between CuO and CuxSy are beneficial for the electrochemical process. When the reaction time is 6 h, as-obtained CuO/CuxSy core-shell octahedral material has a high specific capacity of 413.6 F·g-1 at a current density of 1 A·g-1, and better rate performance and stability even at a higher current density of 20 A·g-1.
GENG P , ZHENG S , TANG H , et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8, 1703259.
doi: 10.1002/aenm.201703259
2
WANG F , WU X , YUAN X , et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46, 6816- 6854.
doi: 10.1039/C7CS00205J
3
OUYANG Y , YE H , XIA X , et al. Hierarchical electrodes of NiCo2S4nanosheets anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry:A, 2019, 3228- 3237.
4
ZHENG Y , XU J , YANG X , et al. Decoration NiCo2S4 nanoflakes onto PPy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2018, 333, 111- 121.
doi: 10.1016/j.cej.2017.09.155
5
YANG Z , XU F , ZHANG W , et al. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application[J]. Journal of Power Sources, 2014, 246 (3): 24- 31.
6
DU X , XIA C , LI Q , et al. Facile fabrication of CuxO composite nanoarray on nanoporous copper assupercapacitor electrode[J]. Materials Letters, 2018, 233, 170- 173.
doi: 10.1016/j.matlet.2018.09.009
7
PANDIAN A S , KALIYAPPAN K . Single-step microwave mediated synthesis of CoS2 anode material for high rate hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (29): 11099- 11106.
doi: 10.1039/C4TA01633E
8
PENG S , LI L , TAN H , et al. Hollow spheres: MS2 (M=Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics[J]. Advanced Functional Materials, 2014, 24 (15): 2155- 2162.
doi: 10.1002/adfm.201303273
9
FU W , HAN W , ZHA H , et al. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors[J]. Physical Chemistry Chemical Physics, 2016, 18 (35): 24471- 24476.
doi: 10.1039/C6CP02228F
10
CHEN K , XUE D . Room-temperature chemical transformation route to CuO nanowires toward high-performance electrode materials[J]. Journal of Physical Chemistry C, 2013, 117 (44): 22576- 22583.
11
DUBAL D P , GUND G S , HOLZE R , et al. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors[J]. Journal of Power Sources, 2013, 242 (35): 687- 698.
12
YU X Y , YU L , SHEN L , SONG X , et al. General formation of MS(M=Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties[J]. Advanced Functional Materials, 2015, 24 (47): 7440- 7446.
13
DONG Z H , LAI X Y , HALPERT JE , et al. Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency[J]. Advanced Materials, 2012, 24 (8): 1046- 1049.
doi: 10.1002/adma.201104626
14
GUAN B Y , YU L , WANG X , et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced Materials, 2016, 29 (6): 1605051.
15
ZHANG G Q , WU H B , HOSTER H E , et al. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors[J]. Energy & Environmental Science, 2012, 5 (11): 9453.
16
HE D , WANG G , LIU G , et al. Construction of leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors[J]. Dalton Transactions, 2017, 46 (10): 3318- 3324.
doi: 10.1039/C7DT00287D
17
DONG H , XING S , SUN B , et al. Design and construction of three-dimensional flower-like CuO hierarchical nanostructureson copper foam for high performance supercapacitor[J]. Electrochimica Acta, 2016, 210, 639- 645.
doi: 10.1016/j.electacta.2016.05.196
18
LI Y , XUE W , QI Y , et al. Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors[J]. Electrochimica Acta, 2017, 234, 63- 70.
doi: 10.1016/j.electacta.2017.02.167
19
ZHOU L , HE Y , JIA C , et al. Construction of hierarchical CuO/Cu2O@NiCo2S4 nanowire arrays on copper foam for high performance supercapacitor electrodes[J]. Nanomaterials, 2017, 7 (9): 273.
doi: 10.3390/nano7090273
20
YUAN D , GANG H , ZHANG F , et al. Facile synthesis of CuS/rGO composite with enhanced electrochemical lithium-storage properties through microwave-assisted hydrothermal method[J]. Electrochimica Acta, 2016, 203, 238- 245.
doi: 10.1016/j.electacta.2016.04.042
21
HENG B , QING C , SUN D , et al. Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance[J]. RSC Advances, 2013, 3 (36): 15719.
doi: 10.1039/c3ra42869a
22
HUANG K J , ZHANG J Z , FAN Y . One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials[J]. Journal of Alloys and Compounds, 2015, 625, 158- 163.
doi: 10.1016/j.jallcom.2014.11.137