1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China 2 Shanghai Key Laboratory of R&D for Metallic Function Materials, Shanghai 201804, China
Auxetic metamaterials and structures have excellent mechanical properties such as shear resistance, impact resistance, fracture resistance, energy absorption and vibration isolation, permeability variability, synclastic curvature in bending, etc. Auxetic metamaterials have broad application prospects in the fields of aerospace, navigation, mechanical automation, biomedicine, national defense and military and textile industry. Based on the deformation mechanism of auxetic metamaterials and structure, the physical models of re-entrant mechanism, rotating rigid mechanism, chiral/antichiral mechanism, fibril/nodule mechanism, miura-folded mechanism, buckling-induced mechanism, helical auxetic yarn structure were reviewed. These models can be widely applied in various engineering applications such as light laminated plates, fluid transportation and yarn to improve their properties. Finally, prospects to the upcoming challenges and progress trends of auxetic metamaterials and structures are made.It is pointed out that the application of negative Poisson's ratio effect can help compensate the change of volume and area under the deformation of uniaxial loading. Then the shock resistance of turbine blade, antenna and car suction box can be improved. As a result, this review can provide benefits for the development of auxetic metamaterials.
YU X L , ZHOU J , LIANG H Y , et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review[J]. Progress in Materials Science, 2018, 94, 114- 173.
doi: 10.1016/j.pmatsci.2017.12.003
YANG Z C , DENG Q T . Mechanical property and application of materials and structures with nagative Possion's ratio[J]. Advances in Mechanics, 2011, (3): 335- 350.
4
YANG W , LI Z M , SHI W , et al. Review on auxetic materials[J]. Journal of Materials Science, 2004, 39, 3269- 3279.
doi: 10.1023/B:JMSC.0000026928.93231.e0
5
LAKES R . Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235, 1038- 1040.
doi: 10.1126/science.235.4792.1038
6
NOVAK N , VESENJAK M , REN Z . Auxetic cellular materials-a review[J]. Journal of Mechanical Engineering, 2016, (9): 485- 493.
7
HVEONHO C , DONGSIK S , KIM D N . Mechanics of auxetic materials. handbook of mechanics of materials[M]. Singapore: Springer, 2018: 1- 25.
REN X , ZHANG X Y , XIE Y M . Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (3): 656- 689.
9
KOLKEN H M A , ZADPOOR A A . Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7, 5111- 5129.
doi: 10.1039/C6RA27333E
10
CHOI J B , LAKES R S . Non-linear properties of metallic cellular materialswith a negative Poisson's ratio[J]. Journal of Materials Science, 1992, 27 (19): 5375- 5381.
doi: 10.1007/BF02403846
11
DONOGHUE J P , ALDERSON K L , EVANS K E . The fracture toughness of composite laminates with a negative Poisson's ratio[J]. Physica Status Solidi (B), 2009, 246 (9): 2011- 2017.
doi: 10.1002/pssb.200982031
12
CHEKKAL I , BIANCHI M , REMILLAT C , et al. Vibro-acoustic properties of auxetic open cell foam: model and experimental results[J]. Acta Acustica United Acustica, 2010, 96, 266- 274.
doi: 10.3813/AAA.918276
ZHANG G L , YANG D Q . Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32 (22): 68- 72.
doi: 10.3969/j.issn.1000-3835.2013.22.013
ZHANG X W , YANG D Q . A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015, 34 (10): 40- 45.
15
ZHANG X W , YANG D Q . Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016, 9, 1- 16.
16
WANG Z Y , HU H . Auxetic materials and their potential applications in textiles[J]. Textile Research Journal, 2014, 84 (15): 1600- 1611.
doi: 10.1177/0040517512449051
CARNEIRO V H , MEIRELES J , PUGA H . Auxetic materials-a review[J]. Materials Science-Poland, 2013, 31 (4): 561- 571.
doi: 10.2478/s13536-013-0140-6
19
CRESPO J , FRANCISCO J M . A continuum approach for the large strain finite element analysis of auxetic materials[J]. International Journal of Mechanical Sciences, 2018, 135, 441- 457.
doi: 10.1016/j.ijmecsci.2017.11.038
20
YANG L , HARRYSSON O , WEST H , et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70, 475- 490.
doi: 10.1016/j.ijsolstr.2015.05.005
21
CARNEIRO V H , PUGA H . Axisymmetric auxetics[J]. Composite Structures, 2018, 195, 232- 248.
doi: 10.1016/j.compstruct.2018.04.058
22
HU L L , LUO Z R , ZHANG Z Y , et al. Mechanical property of re-entrant anti-trichiral honeycombs under large deformation[J]. Composites: Part B, 2019, 163, 107- 120.
doi: 10.1016/j.compositesb.2018.11.010
23
WANG H , LU Z X , YANG Z Y , et al. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance[J]. Composite Structures, 2019, 8, 758- 770.
24
KIM J , SHIN D , YOO D S , et al. Regularly configured structures with polygonal prisms for three-dimensional auxetic behavior[J]. Proceedings of the Royal Society A, 2017, 473 (2202): 20160926.
doi: 10.1098/rspa.2016.0926
25
LAKES R . Deformation mechanisms in negative Poisson's ratio materials: structural aspects[J]. Journal of Materials Science, 1991, 26 (9): 2287- 2292.
doi: 10.1007/BF01130170
26
GRIMA J N , GATT R , FARRUGIA P S , et al. On the properties of auxetic meta-tetrachiral structures[J]. Physica Status Solidi (b), 2008, 245 (3): 511- 520.
doi: 10.1002/pssb.200777704
27
ALDERSON A , EVANS K E . Modelling concurrent deformation mechanisms in auxetic microporous polymers[J]. Journal of Materials Science, 1997, 32 (11): 2797- 2809.
doi: 10.1023/A:1018660130501
28
MAHADEVAN L , RICA S . Self-organized origami[J]. Science, 2005, 307, 1740.
doi: 10.1126/science.1105169
29
LAKES R . Deformation mechanisms in negative Poisson's ratio materials: structural aspects[J]. Journal of Materials Science, 1991, 26 (9): 2287- 2292.
doi: 10.1007/BF01130170
30
JAVID F , LIU J , SHIM J , et al. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders[J]. Journal of the Mechanics and Physics of Solids, 2016, 96, 1- 17.
doi: 10.1016/j.jmps.2016.06.015
31
SAXENA K K , DAS R , CALIUS E P . Three decades of auxetics research-materials with negative Poisson's ratio: a review[J]. Advanced Engineering Materials, 2016, 18 (11): 1847- 1870.
doi: 10.1002/adem.201600053
32
GRIMA J N , GATT R , ALDERSON A . On the potential of connected stars as auxetic systems[J]. Molecular Simulation, 2005, 13, 923- 934.
33
LI Y , OLA H , HARVEY W , et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70, 475- 490.
doi: 10.1016/j.ijsolstr.2015.05.005
34
GRIMA J N , GATT R , ALDERSON A , et al. On the auxetic properties of rotating rectangles' with different connectivity[J]. Journal of the Physical Society of Japan, 2005, 74, 2866- 2867.
doi: 10.1143/JPSJ.74.2866
35
ALSERSON A , ALDERSON K L , ATTARD D , et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70, 1042- 1048.
doi: 10.1016/j.compscitech.2009.07.009
36
CHAN S H , MICHAEL E. P , RODERIC S L . Chiral three-dimensional isotropic lattices with negative Poisson's ratio[J]. Physics Status Solidi B, 2016, 253 (7): 1243- 125.
doi: 10.1002/pssb.201600055
37
EVANS K E , CADDOCK B D . Microporous materials with negative Poisson's ratios Ⅱ. mechanismsand interpretation[J]. Journal of Physics D, 1989, 22, 1877- 1883.
doi: 10.1088/0022-3727/22/12/012
38
HE C , LIU P , GRIFFIN A C . Toward negative Poisson ratio polymers through molecular design[J]. Macromolecules, 1998, 31, 3145- 3147.
doi: 10.1021/ma970787m
39
LV C , KRISHNARAJU D , KONJEVOD G , et al. Origami based mechanical metamaterials[J]. Scientific Reports, 2014, 4, 5979.
40
BOUAZIZ O , MASSE J P , ALLAIN S , et al. Compression of crumpled aluminum thin foils and comparison with other cellular materials[J]. Materials Science and Engineering: A, 2013, 570, 1- 17.
doi: 10.1016/j.msea.2013.01.031
41
BERTOLDI K , BOYCE M C , DESCHANEL S , et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56, 2642- 2668.
doi: 10.1016/j.jmps.2008.03.006
42
SHIM J , PERDIGOU C , CHEN E R , et al. Buckling-induced encapsulation of structured elastic shells under pressure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5978- 5983.
doi: 10.1073/pnas.1115674109
43
MILLER W , HOOK P B , SMITH C W , et al. The manufacture and characterisation of a novel, low modulus, negative Poisson's ratio composite[J]. Composite Science Technology, 2009, 69, 651- 655.
doi: 10.1016/j.compscitech.2008.12.016
44
GRIMA J N , RAVIRALA , GALEA R , et al. Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour[J]. Physica Status Solidi (b), 2011, 248 (1): 117- 122.
doi: 10.1002/pssb.201083982
45
RAVIRALA N , ALDERSON A , ALDERSON K L . Interlocking hexagons model for auxetic behaviour[J]. Journal of Materials Science, 2007, 42 (17): 7433- 7445.
doi: 10.1007/s10853-007-1583-0
46
SMITH C W , GRIMA J N , EVANS K E . A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model[J]. Acta Materialia, 2000, 48 (17): 4349- 4356.
doi: 10.1016/S1359-6454(00)00269-X
47
GASPAR N , SMITH C W , ALDERSON A , et al. A generalised three-dimensional tethered-nodule model for auxetic materials[J]. Journal of Materials Science, 2011, 46 (2): 372- 384.
doi: 10.1007/s10853-010-4846-0
48
DIRRENBERGER J , FOREST S , JEULIN D . Effective elastic properties of auxetic microstructures: anisotropy and structural applications[J]. International Journal of Mechanics and Materials in Design, 2013, 9 (1): 21- 33.
doi: 10.1007/s10999-012-9192-8
MIZZI L , AZZOPARDI K M , ATTARD D , et al. Auxetic metamaterials exhibiting giant negative Poisson's ratios[J]. Physica Status Solidi-rapid Research Letters, 2015, 9 (7): 425- 430.
doi: 10.1002/pssr.201510178
51
BAUGHMAN R H , SHACKLETTE J M , ZAKHIDOV A A , et al. Negative Poisson's ratios as a common feature of cubic metals[J]. Nature, 1998, 392, 362- 365.
doi: 10.1038/32842
YAN F F , XU X D . Negative Poisson's ratio honeycomb structure and its applications in structure design of morphing aircraft[J]. China Mechanical Engineering, 2012, (5): 542- 546.
doi: 10.3969/j.issn.1004-132X.2012.05.007
53
JACOBS S , COCONNIER C , DIMIAIO D , et al. Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing[J]. Smart Materials and Structures, 2012, 21 (7): 075013.
doi: 10.1088/0964-1726/21/7/075013
QI C , AN W Z , YANG S . FE simulation of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing[J]. Journal of Automotive Safety and Energy, 2013, 4 (3): 215- 222.
doi: 10.3969/j.issn.1674-8484.2013.03.003
55
AVELLANEDA M , SWART P J . Calculating the performance of 1-3 piezocomposites for hydrophone applications: an effective medium approach[J]. Journal of the Acoustica1 Society of America, 1998, 103, 1449- 1467.
doi: 10.1121/1.421306
56
ZHOU G , MA Z D , LI G Y , et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Struct Multidisc Optim, 2016, 54, 673- 684.
doi: 10.1007/s00158-016-1452-z
MA P B , CHANG Y P , JIANG G M . Knitted structures with negative Poisson's ratio[J]. China Textile Leader, 2015, 7, 47- 50.
58
SAXENA K K , DAS R , CALIUS E P . Three decades of auxetics research-materials with negative Poisson's ratio: a review[J]. Advanced Engineering Materials, 2016, 18 (11): 1847- 1870.
doi: 10.1002/adem.201600053
59
ALI M , ZEESHAN M , AHMED S , et al. Development and comfort characterization of 2D-woven auxetic fabric for wearable and medical textile applications[J]. Clothing and Textiles Research Journal, 2018, 36 (3): 199- 214.
doi: 10.1177/0887302X18768048