Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 38-47    DOI: 10.11868/j.issn.1001-4381.2019.000391
  综述 本期目录 | 过刊浏览 | 高级检索 |
负泊松比超材料和结构
高玉魁1,2,*()
1 同济大学 材料科学与工程学院, 上海 201804
2 上海市金属功能材料开发应用重点实验室, 上海 201804
Auxetic metamaterials and structures
Yu-kui GAO1,2,*()
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
2 Shanghai Key Laboratory of R&D for Metallic Function Materials, Shanghai 201804, China
全文: PDF(8602 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

负泊松比超材料和结构具有优异的抗剪切性能、抗冲击性能、抗断裂性能、吸能隔振、渗透率可变性能、曲面同向性等力学性能,在航空航天、航海、机械自动化、生物医疗、国防军事、纺织工业等领域具有广泛的应用前景。本文从负泊松比超材料和结构的变形机理出发,综述了内凹结构、旋转刚体结构、手性/反手性结构、纤维/节点结构、折纸结构、褶皱结构、弯曲-诱导结构、螺旋纱线结构等物理模型,这些模型具有广泛的适用性,可运用于轻质夹层板、流体输送、纱线等工程应用,有利于改善结构的使用性能。最后,本文对负泊松比超材料和结构未来的挑战和在航空航天、军事等领域的应用进行了展望,指出利用负泊松比逆转了正泊松比对单轴应力引起的体积和面积变化的补偿效应可有效改善发动机叶片、深空天线以及汽车吸能盒等关键构件的抗冲击性能等,以期为负泊松比超材料和结构的推广应用提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高玉魁
关键词 负泊松比超材料负泊松比力学性能变形机理应用    
Abstract

Auxetic metamaterials and structures have excellent mechanical properties such as shear resistance, impact resistance, fracture resistance, energy absorption and vibration isolation, permeability variability, synclastic curvature in bending, etc. Auxetic metamaterials have broad application prospects in the fields of aerospace, navigation, mechanical automation, biomedicine, national defense and military and textile industry. Based on the deformation mechanism of auxetic metamaterials and structure, the physical models of re-entrant mechanism, rotating rigid mechanism, chiral/antichiral mechanism, fibril/nodule mechanism, miura-folded mechanism, buckling-induced mechanism, helical auxetic yarn structure were reviewed. These models can be widely applied in various engineering applications such as light laminated plates, fluid transportation and yarn to improve their properties. Finally, prospects to the upcoming challenges and progress trends of auxetic metamaterials and structures are made.It is pointed out that the application of negative Poisson's ratio effect can help compensate the change of volume and area under the deformation of uniaxial loading. Then the shock resistance of turbine blade, antenna and car suction box can be improved. As a result, this review can provide benefits for the development of auxetic metamaterials.

Key wordsauxetic metamaterials    negative Poisson's ratio    mechanical property    deformation mechanism    application
收稿日期: 2019-04-27      出版日期: 2021-05-21
中图分类号:  TB381  
基金资助:国家自然科学基金资助项目(11372226)
通讯作者: 高玉魁     E-mail: yukuigao@tongji.edu.cn
作者简介: 高玉魁(1973-), 男, 教授, 博士, 研究方向为疲劳断裂与表层改性等, 联系地址: 上海市杨浦区彰武路100号同济大学彰武路校区材料科学与工程学院(201804), yukuigao@tongji.edu.cn
引用本文:   
高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
Yu-kui GAO. Auxetic metamaterials and structures. Journal of Materials Engineering, 2021, 49(5): 38-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000391      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/38
Fig.1  冲击载荷下的变形机理[8]
(a)正泊松比材料;(b)负泊松比超材料
Fig.2  弯曲变形模式[17]   (a)传统材料;(b)负泊松比超材料
Fig.3  二维内凹六边形蜂窝结构[9, 17]
(a)单元几何构型;(b)变形前;(c)变形后
Fig.4  旋转刚体结构[34]
(a)正方形;(b)矩形;(c)反矩形;(d)双平方;(e)三角形;(f)等腰三角形;(g)双三角形;(h)六边形-三角形
Fig.5  典型纤维/节点结构[38]   (a)用于液晶聚合物的单原纤型结构模型(束型);(b)具有矩形节点的多原纤结构;(c)圆形结点(网络型)
Fig.6  弯曲-诱导结构[41-42]   (a)2D圆形图案及其变形;(b)3D巴基球结构及其变形;(c)圆柱体
Fig.7  纱线结构[43]   (a)变形前;(b)变形后;(c)负泊松比纱线织物
Fig.8  其他负泊松比超材料结构[44-50]
(a)四爪结构;(b)联锁六边形模型;(c)交错肋结构;(d)三维节连杆结构;(e)六面体结构;(f)穿孔板结构
Field Application Reference
Aerospace industry, navigation Jet engine turbine blade, aerocraft wing, rocket fuselage, ship, antenna [13-14, 51-53]
Mechanical automation Vehicle bumpers and seat cushions, adapting piece, safety belt, sensors, heatset, tyre, crash box [48, 54-56]
Biomedical Bandage, dental floss, artificial blood vessel, artificial skin, esophagus and stents, heart valve ring, pulse monitor [8, 57]
Military science Helmet, bulletproof vest, combat dress, silencer, bullet [58]
Textile industry Yarn, fiber, texture, kneecap, gloves, shoes, thermal underwear [59]
Table 1  负泊松比超材料应用
1 YU X L , ZHOU J , LIANG H Y , et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review[J]. Progress in Materials Science, 2018, 94, 114- 173.
doi: 10.1016/j.pmatsci.2017.12.003
2 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54 (13): 1- 14.
2 YU J J , XIE Y , PEI X . State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54 (13): 1- 14.
3 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, (3): 335- 350.
3 YANG Z C , DENG Q T . Mechanical property and application of materials and structures with nagative Possion's ratio[J]. Advances in Mechanics, 2011, (3): 335- 350.
4 YANG W , LI Z M , SHI W , et al. Review on auxetic materials[J]. Journal of Materials Science, 2004, 39, 3269- 3279.
doi: 10.1023/B:JMSC.0000026928.93231.e0
5 LAKES R . Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235, 1038- 1040.
doi: 10.1126/science.235.4792.1038
6 NOVAK N , VESENJAK M , REN Z . Auxetic cellular materials-a review[J]. Journal of Mechanical Engineering, 2016, (9): 485- 493.
7 HVEONHO C , DONGSIK S , KIM D N . Mechanics of auxetic materials. handbook of mechanics of materials[M]. Singapore: Springer, 2018: 1- 25.
8 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51 (3): 656- 689.
8 REN X , ZHANG X Y , XIE Y M . Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (3): 656- 689.
9 KOLKEN H M A , ZADPOOR A A . Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7, 5111- 5129.
doi: 10.1039/C6RA27333E
10 CHOI J B , LAKES R S . Non-linear properties of metallic cellular materialswith a negative Poisson's ratio[J]. Journal of Materials Science, 1992, 27 (19): 5375- 5381.
doi: 10.1007/BF02403846
11 DONOGHUE J P , ALDERSON K L , EVANS K E . The fracture toughness of composite laminates with a negative Poisson's ratio[J]. Physica Status Solidi (B), 2009, 246 (9): 2011- 2017.
doi: 10.1002/pssb.200982031
12 CHEKKAL I , BIANCHI M , REMILLAT C , et al. Vibro-acoustic properties of auxetic open cell foam: model and experimental results[J]. Acta Acustica United Acustica, 2010, 96, 266- 274.
doi: 10.3813/AAA.918276
13 张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击, 2013, 32 (22): 68- 72.
doi: 10.3969/j.issn.1000-3835.2013.22.013
13 ZHANG G L , YANG D Q . Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32 (22): 68- 72.
doi: 10.3969/j.issn.1000-3835.2013.22.013
14 张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015, 34 (10): 40- 45.
14 ZHANG X W , YANG D Q . A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015, 34 (10): 40- 45.
15 ZHANG X W , YANG D Q . Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016, 9, 1- 16.
16 WANG Z Y , HU H . Auxetic materials and their potential applications in textiles[J]. Textile Research Journal, 2014, 84 (15): 1600- 1611.
doi: 10.1177/0040517512449051
17 EVANS K E , ALDERSON A . Auxetic materials: functional materials and structures from lateral thinking[J]. Advanced Materials, 2000, 12, 617- 628.
doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
18 CARNEIRO V H , MEIRELES J , PUGA H . Auxetic materials-a review[J]. Materials Science-Poland, 2013, 31 (4): 561- 571.
doi: 10.2478/s13536-013-0140-6
19 CRESPO J , FRANCISCO J M . A continuum approach for the large strain finite element analysis of auxetic materials[J]. International Journal of Mechanical Sciences, 2018, 135, 441- 457.
doi: 10.1016/j.ijmecsci.2017.11.038
20 YANG L , HARRYSSON O , WEST H , et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70, 475- 490.
doi: 10.1016/j.ijsolstr.2015.05.005
21 CARNEIRO V H , PUGA H . Axisymmetric auxetics[J]. Composite Structures, 2018, 195, 232- 248.
doi: 10.1016/j.compstruct.2018.04.058
22 HU L L , LUO Z R , ZHANG Z Y , et al. Mechanical property of re-entrant anti-trichiral honeycombs under large deformation[J]. Composites: Part B, 2019, 163, 107- 120.
doi: 10.1016/j.compositesb.2018.11.010
23 WANG H , LU Z X , YANG Z Y , et al. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance[J]. Composite Structures, 2019, 8, 758- 770.
24 KIM J , SHIN D , YOO D S , et al. Regularly configured structures with polygonal prisms for three-dimensional auxetic behavior[J]. Proceedings of the Royal Society A, 2017, 473 (2202): 20160926.
doi: 10.1098/rspa.2016.0926
25 LAKES R . Deformation mechanisms in negative Poisson's ratio materials: structural aspects[J]. Journal of Materials Science, 1991, 26 (9): 2287- 2292.
doi: 10.1007/BF01130170
26 GRIMA J N , GATT R , FARRUGIA P S , et al. On the properties of auxetic meta-tetrachiral structures[J]. Physica Status Solidi (b), 2008, 245 (3): 511- 520.
doi: 10.1002/pssb.200777704
27 ALDERSON A , EVANS K E . Modelling concurrent deformation mechanisms in auxetic microporous polymers[J]. Journal of Materials Science, 1997, 32 (11): 2797- 2809.
doi: 10.1023/A:1018660130501
28 MAHADEVAN L , RICA S . Self-organized origami[J]. Science, 2005, 307, 1740.
doi: 10.1126/science.1105169
29 LAKES R . Deformation mechanisms in negative Poisson's ratio materials: structural aspects[J]. Journal of Materials Science, 1991, 26 (9): 2287- 2292.
doi: 10.1007/BF01130170
30 JAVID F , LIU J , SHIM J , et al. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders[J]. Journal of the Mechanics and Physics of Solids, 2016, 96, 1- 17.
doi: 10.1016/j.jmps.2016.06.015
31 SAXENA K K , DAS R , CALIUS E P . Three decades of auxetics research-materials with negative Poisson's ratio: a review[J]. Advanced Engineering Materials, 2016, 18 (11): 1847- 1870.
doi: 10.1002/adem.201600053
32 GRIMA J N , GATT R , ALDERSON A . On the potential of connected stars as auxetic systems[J]. Molecular Simulation, 2005, 13, 923- 934.
33 LI Y , OLA H , HARVEY W , et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70, 475- 490.
doi: 10.1016/j.ijsolstr.2015.05.005
34 GRIMA J N , GATT R , ALDERSON A , et al. On the auxetic properties of rotating rectangles' with different connectivity[J]. Journal of the Physical Society of Japan, 2005, 74, 2866- 2867.
doi: 10.1143/JPSJ.74.2866
35 ALSERSON A , ALDERSON K L , ATTARD D , et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70, 1042- 1048.
doi: 10.1016/j.compscitech.2009.07.009
36 CHAN S H , MICHAEL E. P , RODERIC S L . Chiral three-dimensional isotropic lattices with negative Poisson's ratio[J]. Physics Status Solidi B, 2016, 253 (7): 1243- 125.
doi: 10.1002/pssb.201600055
37 EVANS K E , CADDOCK B D . Microporous materials with negative Poisson's ratios Ⅱ. mechanismsand interpretation[J]. Journal of Physics D, 1989, 22, 1877- 1883.
doi: 10.1088/0022-3727/22/12/012
38 HE C , LIU P , GRIFFIN A C . Toward negative Poisson ratio polymers through molecular design[J]. Macromolecules, 1998, 31, 3145- 3147.
doi: 10.1021/ma970787m
39 LV C , KRISHNARAJU D , KONJEVOD G , et al. Origami based mechanical metamaterials[J]. Scientific Reports, 2014, 4, 5979.
40 BOUAZIZ O , MASSE J P , ALLAIN S , et al. Compression of crumpled aluminum thin foils and comparison with other cellular materials[J]. Materials Science and Engineering: A, 2013, 570, 1- 17.
doi: 10.1016/j.msea.2013.01.031
41 BERTOLDI K , BOYCE M C , DESCHANEL S , et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56, 2642- 2668.
doi: 10.1016/j.jmps.2008.03.006
42 SHIM J , PERDIGOU C , CHEN E R , et al. Buckling-induced encapsulation of structured elastic shells under pressure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5978- 5983.
doi: 10.1073/pnas.1115674109
43 MILLER W , HOOK P B , SMITH C W , et al. The manufacture and characterisation of a novel, low modulus, negative Poisson's ratio composite[J]. Composite Science Technology, 2009, 69, 651- 655.
doi: 10.1016/j.compscitech.2008.12.016
44 GRIMA J N , RAVIRALA , GALEA R , et al. Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour[J]. Physica Status Solidi (b), 2011, 248 (1): 117- 122.
doi: 10.1002/pssb.201083982
45 RAVIRALA N , ALDERSON A , ALDERSON K L . Interlocking hexagons model for auxetic behaviour[J]. Journal of Materials Science, 2007, 42 (17): 7433- 7445.
doi: 10.1007/s10853-007-1583-0
46 SMITH C W , GRIMA J N , EVANS K E . A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model[J]. Acta Materialia, 2000, 48 (17): 4349- 4356.
doi: 10.1016/S1359-6454(00)00269-X
47 GASPAR N , SMITH C W , ALDERSON A , et al. A generalised three-dimensional tethered-nodule model for auxetic materials[J]. Journal of Materials Science, 2011, 46 (2): 372- 384.
doi: 10.1007/s10853-010-4846-0
48 DIRRENBERGER J , FOREST S , JEULIN D . Effective elastic properties of auxetic microstructures: anisotropy and structural applications[J]. International Journal of Mechanics and Materials in Design, 2013, 9 (1): 21- 33.
doi: 10.1007/s10999-012-9192-8
49 GRIMA J N , GATT R . Perforated sheets exhibiting negative Poisson's ratios[J]. Advanced Engineering Materials, 2010, 12 (6): 460- 464.
doi: 10.1002/adem.201000005
50 MIZZI L , AZZOPARDI K M , ATTARD D , et al. Auxetic metamaterials exhibiting giant negative Poisson's ratios[J]. Physica Status Solidi-rapid Research Letters, 2015, 9 (7): 425- 430.
doi: 10.1002/pssr.201510178
51 BAUGHMAN R H , SHACKLETTE J M , ZAKHIDOV A A , et al. Negative Poisson's ratios as a common feature of cubic metals[J]. Nature, 1998, 392, 362- 365.
doi: 10.1038/32842
52 颜芳芳, 徐晓东. 负泊松比柔性蜂窝结构在变体机翼中的应用[J]. 中国机械工程, 2012, (5): 542- 546.
doi: 10.3969/j.issn.1004-132X.2012.05.007
52 YAN F F , XU X D . Negative Poisson's ratio honeycomb structure and its applications in structure design of morphing aircraft[J]. China Mechanical Engineering, 2012, (5): 542- 546.
doi: 10.3969/j.issn.1004-132X.2012.05.007
53 JACOBS S , COCONNIER C , DIMIAIO D , et al. Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing[J]. Smart Materials and Structures, 2012, 21 (7): 075013.
doi: 10.1088/0964-1726/21/7/075013
54 亓昌, 安文姿, 杨姝. 负泊松比安全带织带乘员碰撞保护性能的FE仿真[J]. 汽车安全与节能学报, 2013, 4 (3): 215- 222.
doi: 10.3969/j.issn.1674-8484.2013.03.003
54 QI C , AN W Z , YANG S . FE simulation of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing[J]. Journal of Automotive Safety and Energy, 2013, 4 (3): 215- 222.
doi: 10.3969/j.issn.1674-8484.2013.03.003
55 AVELLANEDA M , SWART P J . Calculating the performance of 1-3 piezocomposites for hydrophone applications: an effective medium approach[J]. Journal of the Acoustica1 Society of America, 1998, 103, 1449- 1467.
doi: 10.1121/1.421306
56 ZHOU G , MA Z D , LI G Y , et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Struct Multidisc Optim, 2016, 54, 673- 684.
doi: 10.1007/s00158-016-1452-z
57 马丕波, 常玉萍, 蒋高明. 负泊松比针织结构及其应用[J]. 纺织导报, 2015, 7, 47- 50.
57 MA P B , CHANG Y P , JIANG G M . Knitted structures with negative Poisson's ratio[J]. China Textile Leader, 2015, 7, 47- 50.
58 SAXENA K K , DAS R , CALIUS E P . Three decades of auxetics research-materials with negative Poisson's ratio: a review[J]. Advanced Engineering Materials, 2016, 18 (11): 1847- 1870.
doi: 10.1002/adem.201600053
59 ALI M , ZEESHAN M , AHMED S , et al. Development and comfort characterization of 2D-woven auxetic fabric for wearable and medical textile applications[J]. Clothing and Textiles Research Journal, 2018, 36 (3): 199- 214.
doi: 10.1177/0887302X18768048
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn