Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 38-47    DOI: 10.11868/j.issn.1001-4381.2019.000391
  综述 本期目录 | 过刊浏览 | 高级检索 |
负泊松比超材料和结构
高玉魁1,2
1. 同济大学 材料科学与工程学院, 上海 201804;
2. 上海市金属功能材料开发应用重点实验室, 上海 201804
Auxetic metamaterials and structures
GAO Yu-kui1,2
1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
2. Shanghai Key Laboratory of R&D for Metallic Function Materials, Shanghai 201804, China
全文: PDF(8602 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 负泊松比超材料和结构具有优异的抗剪切性能、抗冲击性能、抗断裂性能、吸能隔振、渗透率可变性能、曲面同向性等力学性能,在航空航天、航海、机械自动化、生物医疗、国防军事、纺织工业等领域具有广泛的应用前景。本文从负泊松比超材料和结构的变形机理出发,综述了内凹结构、旋转刚体结构、手性/反手性结构、纤维/节点结构、折纸结构、褶皱结构、弯曲-诱导结构、螺旋纱线结构等物理模型,这些模型具有广泛的适用性,可运用于轻质夹层板、流体输送、纱线等工程应用,有利于改善结构的使用性能。最后,本文对负泊松比超材料和结构未来的挑战和在航空航天、军事等领域的应用进行了展望,指出利用负泊松比逆转了正泊松比对单轴应力引起的体积和面积变化的补偿效应可有效改善发动机叶片、深空天线以及汽车吸能盒等关键构件的抗冲击性能等,以期为负泊松比超材料和结构的推广应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高玉魁
关键词 负泊松比超材料负泊松比力学性能变形机理应用    
Abstract:Auxetic metamaterials and structures have excellent mechanical properties such as shear resistance, impact resistance, fracture resistance, energy absorption and vibration isolation, permeability variability, synclastic curvature in bending, etc. Auxetic metamaterials have broad application prospects in the fields of aerospace, navigation, mechanical automation, biomedicine, national defense and military and textile industry. Based on the deformation mechanism of auxetic metamaterials and structure, the physical models of re-entrant mechanism, rotating rigid mechanism, chiral/antichiral mechanism, fibril/nodule mechanism, miura-folded mechanism, buckling-induced mechanism, helical auxetic yarn structure were reviewed. These models can be widely applied in various engineering applications such as light laminated plates, fluid transportation and yarn to improve their properties. Finally, prospects to the upcoming challenges and progress trends of auxetic metamaterials and structures are made.It is pointed out that the application of negative Poisson’s ratio effect can help compensate the change of volume and area under the deformation of uniaxial loading. Then the shock resistance of turbine blade, antenna and car suction box can be improved. As a result, this review can provide benefits for the development of auxetic metamaterials.
Key wordsauxetic metamaterials    negative Poisson's ratio    mechanical property    deformation mechanism    application
收稿日期: 2019-04-27      出版日期: 2021-05-21
中图分类号:  TB381  
基金资助:国家自然科学基金资助项目(11372226)
通讯作者: 高玉魁(1973-),男,教授,博士,研究方向为疲劳断裂与表层改性等,联系地址:上海市杨浦区彰武路100号同济大学彰武路校区材料科学与工程学院(201804),yukuigao@tongji.edu.cn     E-mail: yukuigao@tongji.edu.cn
引用本文:   
高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
GAO Yu-kui. Auxetic metamaterials and structures. Journal of Materials Engineering, 2021, 49(5): 38-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000391      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/38
[1] YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility:a brief review[J]. Progress in Materials Science, 2018, 94:114-173.
[2] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13):1-14.
[3] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011(3):335-350. YANG Z C, DENG Q T. Mechanical property and application of materials and structures with nagative Possion's ratio[J]. Advances in Mechanics, 2011(3):335-350.
[4] YANG W, LI Z M, SHI W, et al. Review on auxetic materials[J]. Journal of Materials Science, 2004, 39:3269-3279.
[5] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235:1038-1040.
[6] NOVAK N, VESENJAK M, REN Z. Auxetic cellular materials-a review[J]. Journal of Mechanical Engineering, 2016(9):485-493.
[7] HVEONHO C, DONGSIK S, KIM D N. Mechanics of auxetic materials. handbook of mechanics of materials[M]. Singapore:Springer, 2018:1-25.
[8] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报. 2019, 51(3):656-689. REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):656-689.
[9] KOLKEN H M A, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7:5111-5129.
[10] CHOI J B, LAKES R S. Non-linear properties of metallic cellular materialswith a negative Poisson's ratio[J]. Journal of Materials Science, 1992, 27(19):5375-5381.
[11] DONOGHUE J P, ALDERSON K L, EVANS K E. The fracture toughness of composite laminates with a negative Poisson's ratio[J]. Physica Status Solidi (B), 2009, 246(9):2011-2017.
[12] CHEKKAL I, BIANCHI M, REMILLAT C, et al. Vibro-acoustic properties of auxetic open cell foam:model and experimental results[J]. Acta Acustica United Acustica, 2010, 96:266-274.
[13] 张梗林, 杨德庆.船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击, 2013, 32(22):68-72. ZHANG G L, YANG D Q. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32(22):68-72.
[14] 张相闻, 杨德庆. 船用新型抗冲击隔振蜂窝基座[J]. 振动与冲击, 2015, 34(10):40-45. ZHANG X W, YANG D Q. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015, 34(10):40-45.
[15] ZHANG X W, YANG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016, 9:1-16.
[16] WANG Z Y, HU H. Auxetic materials and their potential applications in textiles[J]. Textile Research Journal, 2014, 84(15):1600-1611.
[17] EVANS K E, ALDERSON A. Auxetic materials:functional materials and structures from lateral thinking[J]. Advanced Materials, 2000, 12:617-628.
[18] CARNEIRO V H, MEIRELES J, PUGA H. Auxetic materials-a review[J]. Materials Science-Poland, 2013, 31(4):561-571.
[19] CRESPO J, FRANCISCO J M. A continuum approach for the large strain finite element analysis of auxetic materials[J]. International Journal of Mechanical Sciences, 2018, 135:441-457.
[20] YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70:475-490.
[21] CARNEIRO V H, PUGA H. Axisymmetric auxetics[J]. Composite Structures, 2018, 195:232-248.
[22] HU L L, LUO Z R, ZHANG Z Y, et al. Mechanical property of re-entrant anti-trichiral honeycombs under large deformation[J]. Composites:Part B, 2019, 163:107-120.
[23] WANG H, LU Z X, YANG Z Y, et al. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance[J]. Composite Structures, 2019, 8:758-770.
[24] KIM J, SHIN D, YOO D S, et al. Regularly configured structures with polygonal prisms for three-dimensional auxetic behavior[J]. Proceedings of the Royal Society A, 2017, 473(2202):20160926.
[25] LAKES R. Deformation mechanisms in negative Poisson's ratio materials:structural aspects[J]. Journal of Materials Science, 1991, 26(9):2287-2292.
[26] GRIMA J N, GATT R, FARRUGIA P S, et al. On the properties of auxetic meta-tetrachiral structures[J]. Physica Status Solidi (b), 2008, 245(3):511-520.
[27] ALDERSON A, EVANS K E. Modelling concurrent deformation mechanisms in auxetic microporous polymers[J]. Journal of Materials Science, 1997, 32(11):2797-2809.
[28] MAHADEVAN L, RICA S. Self-organized origami[J]. Science, 2005, 307:1740.
[29] LAKES R. Deformation mechanisms in negative Poisson's ratio materials:structural aspects[J]. Journal of Materials Science, 1991, 26(9):2287-2292.
[30] JAVID F, LIU J, SHIM J, et al. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders[J]. Journal of the Mechanics and Physics of Solids, 2016, 96:1-17.
[31] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research-materials with negative Poisson's ratio:a review[J]. Advanced Engineering Materials, 2016, 18(11):1847-1870.
[32] GRIMA J N, GATT R, ALDERSON A. On the potential of connected stars as auxetic systems[J]. Molecular Simulation, 2005, 13:923-934.
[33] LI Y, OLA H, HARVEY W, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69/70:475-490.
[34] GRIMA J N, GATT R, ALDERSON A, et al. On the auxetic properties of rotating rectangles' with different connectivity[J]. Journal of the Physical Society of Japan, 2005, 74:2866-2867.
[35] ALSERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[J]. Composites Science and Technology, 2010, 70:1042-1048.
[36] CHAN S H, MICHAEL E. P, RODERIC S L. Chiral three-dimensional isotropic lattices with negative Poisson's ratio[J]. Physics Status Solidi B, 2016, 253(7):1243-125.
[37] EVANS K E, CADDOCK B D. Microporous materials with negative Poisson's ratios Ⅱ. mechanismsand interpretation[J]. Journal of Physics D, 1989, 22:1877-1883.
[38] HE C, LIU P, GRIFFIN A C. Toward negative Poisson ratio polymers through molecular design[J]. Macromolecules, 1998, 31:3145-3147.
[39] LV C, KRISHNARAJU D, KONJEVOD G, et al. Origami based mechanical metamaterials[J]. Scientific Reports, 2014, 4:5979.
[40] BOUAZIZ O, MASSE J P, ALLAIN S, et al. Compression of crumpled aluminum thin foils and comparison with other cellular materials[J]. Materials Science and Engineering:A, 2013, 570:1-17.
[41] BERTOLDI K, BOYCE M C, DESCHANEL S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56:2642-2668.
[42] SHIM J, PERDIGOU C, CHEN E R, et al. Buckling-induced encapsulation of structured elastic shells under pressure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:5978-5983.
[43] MILLER W, HOOK P B, SMITH C W, et al. The manufacture and characterisation of a novel, low modulus, negative Poisson's ratio composite[J]. Composite Science Technology, 2009, 69:651-655.
[44] GRIMA J N, RAVIRALA, GALEA R, et al. Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour[J]. Physica Status Solidi (b), 2011, 248(1):117-122.
[45] RAVIRALA N, ALDERSON A, ALDERSON K L. Interlocking hexagons model for auxetic behaviour[J]. Journal of Materials Science, 2007, 42(17):7433-7445.
[46] SMITH C W, GRIMA J N, EVANS K E. A novel mechanism for generating auxetic behaviour in reticulated foams:missing rib foam model[J]. Acta Materialia, 2000, 48(17):4349-4356.
[47] GASPAR N, SMITH C W, ALDERSON A, et al. A generalised three-dimensional tethered-nodule model for auxetic materials[J]. Journal of Materials Science, 2011, 46(2):372-384.
[48] DIRRENBERGER J, FOREST S, JEULIN D. Effective elastic properties of auxetic microstructures:anisotropy and structural applications[J]. International Journal of Mechanics and Materials in Design, 2013, 9(1):21-33.
[49] GRIMA J N, GATT R. Perforated sheets exhibiting negative Poisson's ratios[J]. Advanced Engineering Materials, 2010, 12(6):460-464.
[50] MIZZI L, AZZOPARDI K M, ATTARD D, et al. Auxetic metamaterials exhibiting giant negative Poisson's ratios[J]. Physica Status Solidi-rapid Research Letters, 2015, 9(7):425-430.
[51] BAUGHMAN R H, SHACKLETTE J M, ZAKHIDOV A A, et al. Negative Poisson's ratios as a common feature of cubic metals[J]. Nature, 1998, 392:362-365.
[52] 颜芳芳, 徐晓东. 负泊松比柔性蜂窝结构在变体机翼中的应用[J]. 中国机械工程, 2012(5):542-546. YAN F F, XU X D. Negative Poisson's ratio honeycomb structure and its applications in structure design of morphing aircraft[J]. China Mechanical Engineering, 2012(5):542-546.
[53] JACOBS S, COCONNIER C, DIMIAIO D, et al. Deployable auxetic shape memory alloy cellular antenna demonstrator:design, manufacturing and modal testing[J]. Smart Materials and Structures, 2012, 21(7):075013.
[54] 亓昌, 安文姿, 杨姝. 负泊松比安全带织带乘员碰撞保护性能的FE仿真[J]. 汽车安全与节能学报, 2013, 4(3):215-222. QI C, AN W Z, YANG S. FE simulation of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing[J]. Journal of Automotive Safety and Energy, 2013, 4(3):215-222.
[55] AVELLANEDA M, SWART P J. Calculating the performance of 1-3 piezocomposites for hydrophone applications:an effective medium approach[J]. Journal of the Acoustica1 Society of America, 1998, 103:1449-1467.
[56] ZHOU G, MA Z D, LI G Y, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm[J]. Struct Multidisc Optim, 2016, 54:673-684.
[57] 马丕波, 常玉萍, 蒋高明. 负泊松比针织结构及其应用[J]. 纺织导报, 2015, 7:47-50. MA P B, CHANG Y P, JIANG G M. Knitted structures with negative Poisson's ratio[J]. China Textile Leader, 2015, 7:47-50.
[58] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research-materials with negative Poisson's ratio:a review[J]. Advanced Engineering Materials, 2016, 18(11):1847-1870.
[59] ALI M, ZEESHAN M, AHMED S, et al. Development and comfort characterization of 2D-woven auxetic fabric for wearable and medical textile applications[J]. Clothing and Textiles Research Journal, 2018, 36(3):199-214.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[3] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[4] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[5] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[6] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[7] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[8] 王佳佳, 喻兰兰, 胡霞, 刘宝军. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1): 43-55.
[9] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[10] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[11] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[12] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[13] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[14] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[15] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn