Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 53-58    DOI: 10.11868/j.issn.1001-4381.2019.000401
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响
赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培
南京工业大学 材料化学工程国家重点实验室, 南京 210009
Effect of heat treatment time on structure and properties of PMI foam
ZHAO Xin-long, JIN Xin, DING Cheng-cheng, YU Juan, WANG Xiao-dong, HUANG Pei
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
全文: PDF(2506 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以甲基丙烯酸丁酯(BMA),丙烯酰胺(AM)为反应单体,丙烯酸(AA)作为第三单体和交联剂,在不同热处理时间下,通过自由基本体聚合制备聚甲基丙烯酰亚胺(PMI)泡沫。采用傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、热重分析(TGA)、差示扫描量热分析(DSC)等手段对其结构和性能进行表征。结果表明:随着对BMA/AM/AA共聚物热处理时间增加,分子链间发生重排反应生成六元酰亚胺环,经过交联固化后得到PMI泡沫,其特征吸收峰与文献值能较好地吻合。泡沫热处理5 h后得到孔径为100~200 μm致密硬质闭孔泡沫,其力学性能良好,压缩强度为8.160 MPa,拉伸强度达到12.95 MPa。泡沫的玻璃化转变温度(Tg)为255℃,热失重10%时热分解温度Td10高达280℃,345℃时泡沫仍能残留80%以上,其导热系数为0.05424 W/(m·K),说明对共聚物热处理5 h后得到了具有优异的耐高温性能和隔热性能的泡沫。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵新龙
金鑫
丁成成
俞娟
王晓东
黄培
关键词 PMI泡沫热处理时间交联固化力学性能热性能    
Abstract:Polymethacrylimide foams were prepared by free radical bulk polymerization with butyl methacrylate (BMA), acrylamide (AM) as the reactive monomer, acrylic acid (AA) as the third monomer and crosslinker at different heat treatment time. The structure and properties were characterized by FTIR, SEM, TGA and DSC. The results show that with the increase of heat treatment time of BMA/AM/AA copolymer, the rearrangement reaction between molecular chains produces a six-membered imide ring. After cross-linking and solidification, PMI foam is obtained. The characteristic absorption peaks are in good agreement with the literature values. After heat treatment for 5 h, a dense closed cell foam with a pore diameter of 100-200 μm is obtained, which has good mechanical properties, compressive strength of 8.160 MPa and tensile strength of 12.95 MPa. The glass transition temperature (Tg) of the foam is 255℃, the thermal decomposition temperature Td10 is as high as 280℃ when the thermal mass loss is 10%, and the foam still retains more than 80% at 345℃, and the thermal conductivity is 0.05424 W/(m·K). It is indicated that the foam with excellent high temperature resistance and thermal insulation properties is obtained after heat treatment of the copolymer for 5 h.
Key wordsPMI foam    heat treatment time    cross-linking curing    mechanical property    thermal property
收稿日期: 2019-04-27      出版日期: 2020-03-18
中图分类号:  TQ328.2  
通讯作者: 黄培(1967-),男,教授,博士,博士生导师,主要从事功能材料的合成及应用研究,联系地址:南京工业大学先进聚合物研究所(210009),E-mail:phuang@njut.edu.cn     E-mail: phuang@njut.edu.cn
引用本文:   
赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
ZHAO Xin-long, JIN Xin, DING Cheng-cheng, YU Juan, WANG Xiao-dong, HUANG Pei. Effect of heat treatment time on structure and properties of PMI foam. Journal of Materials Engineering, 2020, 48(3): 53-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000401      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/53
[1] CHEN Y M.Preparation and structural characterization of polymethacrylimide foams[J].New Chemical Materials,2007,35(2):32-34.
[2] 曲春艳,谢克磊,马瑛剑,等.聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征[J].材料工程,2008(11):19-23. QU C Y,XIE K L,MA Y J,et al. Preparation and characterization of polymethacrylimide(PMI) foams[J]. Journal of Materials Engineering,2008(11):19-23.
[3] YANG F P,LIN Q Y,JIANG J J.Experimental study on fatigue failure and damage of sandwich structure with PMI foam core[J].Fatigue & Fracture of Engineering Materials & Structures,2015,38(4):456-465.
[4] JOHN M,SKALA T,WAGNER T,et al.Dimensional changes in CFRP/PMI foam core sandwich structures[J].Applied Composite Materials,2013,20(4):601-614.
[5] XU R Z,GUAN Z D,WANG R Y,et al.Failure mechanism analysis of different types of manufacture for composite stiffened panels under axial compression load[J].Journal of Beijing University of Aeronautics and Astronautics,2016,42(5):1032-1038.
[6] 徐荣章,凌晓涛,贾利勇.成型工艺对复合材料帽型加筋板轴压特性的影响[J].材料工程,2018,46(4):152-157. XU R Z,LING X T,JIA L Y.Effect of molding process on axial compression characteristics of composite hat stiffened plates[J].Journal of Materials Engineering,2018,46(4):152-157.
[7] ZHOU J L,LI W X,XU P.The effects of microcell structure on quasi-static compression performance of PMI foam[J].Materials Review,2017,31(20):147-151.
[8] LI J F,ZHI T Y,GUO C Y,et al.Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases[J].Composite Structures,2018,201:845-856.
[9] ZHANG Z Y,XU M J, LI B, et al.Preparation and characterization of polymethacrylimide/silicate foam[J].Polymers for Advanced Technologies,2018,29(12):2982-2991.
[10] EUGENE S B,KLEIN A.Preparation of linear cyclic polyimides from lattices:US4169924[P].1979-10-02.
[11] STEIN P.Method for the synthesis of copolymers for producing polymethacrylimides:US20070142588[P].2004-08-25.
[12] LIU T M,ZHANG G C,LIANG G Z,et al.In situ cyclization reactions during the preparation of high-performance methacrylic acid/acrylonitrile/acrylamide ternary copolymer foam[J].Appl Polym Sci,2007,106(3):1462-1469.
[13] CHEN T,ZHANG G C,DONG S L,et al.Flame-retardant modification of PMI foam plastic with structural flame[J].Polymer Materials Science & Engineering,2010,26(1):102-106.
[14] DING H Y,TANG H Y,WANG F,et al.The molecular structure control of butyl methacrylate/acrylamide (co)polymers[J].Materials & Design,2015,88:820-826.
[15] WEI F X,DING H Y,TANG H Y,et al.Transformation of the molecular structure of butyl methacrylate/acrylamide/acrylic acid copolymers during heat treatment[J].Materials & Design,2016,96:304-313.
[16] TANG H Y,RAO X B.Effects of multiple crosslinking agents on structure and properties of polymethacrylimide (PMI) foams[J].Materials Research Innovations,2014,18(Suppl 2):473-477.
[17] 刘晓丽,鹿海军,邢丽英.双马来酰亚胺泡沫的微观形貌与结构控制研究[J].材料工程,2012(8):83-87. LIU X L,LU H J,XING L Y.Study on micromorphology and structure control of bismaleimide foam[J].Journal of Materials Engineering,2012(8):83-87.
[18] 张明艳,高升,吴子剑,等.共聚低热膨胀聚酰亚胺薄膜的制备与表征[J].材料工程,2019,47(5):153-158. ZHANG M Y,GAO S,WU Z J,et al.Preparation and characterization of copolymerized low thermal expansion polyimide film[J].Journal of Materials Engineering,2019,47(5):153-158.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[6] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[7] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[13] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn