Electrocatalytic oxidation is an effective water treatment method for degradation of organic pollutants, and the key to the technical advantages lies in anode materials with excellent performance. Ti-based anode can be conveniently prepared by coating a titanium substrate with a non-noble metal oxide such as lead, tin or manganese. At the same time, the anode materials with outstanding stability and catalytic activity can be obtained by various preparation and modification methods, which make it have great development prospects. Research progress on the stability optimization of non-precious metal oxide coating anode was reviewed from the perspective of substrate processing, intermediate layer optimization and surface modification. Catalytic activity enhancement was summarized from the aspect of surface synergism and the expansion of the action area, and the modification mechanism of coating anodes was commented. Finally, in order to promote the development of the electrocatalytic oxidation anode materials and its application in water treatment, development direction of non-precious metal oxide coated anodes was pointed out.
YAO Y W , TENG G , YANG Y , et al. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: electrode characterization, influencing factors and degradation pathways[J]. Separation and Purification Technology, 2019, 211, 456- 466.
doi: 10.1016/j.seppur.2018.10.021
2
ZULOAGA O , NAVARRO P , BIZKARGUENAGA E , et al. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review[J]. Analytica Chimica Acta, 2012, 736, 7- 29.
doi: 10.1016/j.aca.2012.05.016
3
MARTÍNEZ-HUITLE C A , RODRIGO M A , SIRÉS I , et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115 (24): 13362- 13407.
doi: 10.1021/acs.chemrev.5b00361
4
COMNINELLIS C . Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochemical Acta, 1994, 39 (11/12): 1857- 1862.
5
PANIZZA M , CERISOLA G . Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109 (12): 6541- 6569.
doi: 10.1021/cr9001319
6
WU W , HUANG Z H , LIM T T . Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Applied Catalysis:A, 2014, 480, 58- 78.
doi: 10.1016/j.apcata.2014.04.035
7
SUBBARAO A N , VENKATARANGAIAH V T . Metal oxide-coated anodes in wastewater treatment[J]. Environmental Science and Pollution Research, 2014, 21 (5): 3197- 3217.
doi: 10.1007/s11356-013-2313-6
8
SHESTAKOVA M , SILLANPAA M . Electrode materials used for electrochemical oxidation of organic compounds in wastewater[J]. Reviews in Environmental Science and Biotechnology, 2017, 16 (2): 223- 238.
9
VARGAS R , BORRÁS C , MÉNDEZ D , et al. Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives[J]. Journal of Solid State Electrochemistry, 2016, 20 (4): 875- 893.
10
ZHANG W , GHALI E , HOULACHI G . Review of oxide coated catalytic titanium anodes performance for metal electrowinning[J]. Hydrometallurgy, 2017, 169, 456- 467.
doi: 10.1016/j.hydromet.2017.02.014
11
HAO J , MA J , LI C . Polyaniline-MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors[J]. Journal of Materials Chemistry, 2012, 22 (33): 16939- 16942.
doi: 10.1039/c2jm33249c
12
LI J , YANG Z , XU H , et al. Electrochemical treatment of mature landfill leachate using Ti/RuO2-IrO2 and Al electrode: optimization and mechanism[J]. RSC Advances, 2016, 6 (53): 47509- 47519.
doi: 10.1039/C6RA05080H
13
CAO H , CHEN M , WU L , et al. Electrochemical properties of IrO2 active anode with TNTs interlayer for oxygen evolution[J]. Applied Surface Science, 2018, 428, 861- 869.
doi: 10.1016/j.apsusc.2017.09.169
FAN Y Y , CHEN Z , LI J Y , et al. Electrochemical behavior of PbO2 electrode modified by AEO for the degradation of methyl orange[J]. Journal of Materials Engineering, 2014, (7): 10- 15.
15
ALAOUI A , KACEMI K E , ASS K E , et al. Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution[J]. Separation & Purification Technology, 2015, 154, 281- 289.
16
YU H , ZHANG X , ZHAO M , et al. Norfloxacin degradation by a green carbon black-Ti/SnO2-Sb electrochemical system in saline water[J]. Catalysis Today, 2019, 327, 308- 314.
doi: 10.1016/j.cattod.2018.04.034
17
XU F , CHANG L M , DUAN X Y , et al. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis[J]. Electrochimica Acta, 2019, 300, 53- 66.
doi: 10.1016/j.electacta.2019.01.090
18
TRASATTI S . Electrocatalysis: understanding the success of DSA®[J]. Electrochimica Acta, 2000, 45, 2377- 2385.
doi: 10.1016/S0013-4686(00)00338-8
19
BRAHIM M B , AMMAR H B , ABDELHéDI R , et al. Electrochemical removal of the insecticide imidacloprid from water on a boron-doped diamond and Ta/PbO2 anodes using anodic oxidation process[J]. Korean Journal of Chemical Engineering, 2016, 33 (9): 1- 8.
20
SAMET Y , AGENGUI L , ABDELHÉDI R . Anodic oxidation of chlorpyrifos in aqueous solution at lead dioxide electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 650 (1): 152- 158.
21
ELAISSAOUI I , AKROUT H , GRASSINI S , et al. Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO2 anodes[J]. Materials & Design, 2016, 110, 633- 643.
22
范亚卓.新型三维多孔钛阳极的微结构和性能[D].厦门: 厦门大学, 2016.
22
FAN Y Z. Microstructure and performances of novel three-dimensional porous titanium anodes[D]. Xiamen: Xiamen University, 2016.
23
LI G Z , LI G , WANG H , et al. Preparation of Sb doped nano SnO2/porous Ti electrode and its degradation of methylene orange[J]. Rare Metal Materials and Engineering, 2015, 44 (6): 1326- 1330.
doi: 10.1016/S1875-5372(15)30083-7
FAN Y Z , WANG K , ZHANG Y . The research of performance and failure mechanisms for porous titanium-based low-price metal anodes[J]. New Technology & New Process, 2013, (11): 115- 117.
doi: 10.3969/j.issn.1003-5311.2013.11.041
25
XUE J Q , MA S W , BI Q , et al. Comparative study on the effects of different structural Ti substrates on the properties of SnO2 electrodes[J]. Journal of Alloys and Compounds, 2019, 773, 1040- 1047.
doi: 10.1016/j.jallcom.2018.09.227
26
SUN J K , JIANG Y , ZHONG X , et al. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells[J]. Nano Energy, 2017, 32, 130- 156.
doi: 10.1016/j.nanoen.2016.12.022
27
DAYANNE C M , MÓNICA C L , MARCO A Q , et al. Large disk electrodes of Ti/TiO2-nanotubes/PbO2 for environmental applications[J]. RSC Advances, 2015, 5, 31454- 31459.
doi: 10.1039/C4RA16723F
28
LI P , ZHAO G , CUI X , et al. Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid[J]. The Journal of Physical Chemistry:C, 2009, 113 (6): 2375- 2383.
doi: 10.1021/jp8078106
LI L C , FANG D , LI G Z , et al. Mechanism and influence factors of valve-metal oxide nanotube arrays prepared by anodization process[J]. Progress in Chemistry, 2016, 28 (4): 589- 606.
JIANG J F , MENG H M , SUN D B . Effect of sand-blasting pretreatment on surface morphology, electrocatalytic activities and service life of Ti/IrO2·Ta2O5 anodes[J]. The Chinese Journal of Nonferrous Metals, 2010, (6): 1161- 1169.
LUO Z C , YUAN H , QI M . The effect of high-energy shot peening commercial pure titanium on hydroxyapatite coating by sol-gel[J]. Journal of Functional Materials, 2008, (9): 1504- 1506.
doi: 10.3321/j.issn:1001-9731.2008.09.026
32
ANDRADE L S , LUÍS AUGUSTO R , ROCHA-FILHO R C , et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J]. Chemosphere, 2007, 66 (11): 2035- 2043.
doi: 10.1016/j.chemosphere.2006.10.028
TANG C B , ZHENG C , YU L H , et al. Effect of electroplating nickel inter-layer on performance of Ti-based lead dioxide electrodes[J]. Rare Metal Materials and Engineering, 2019, 48 (1): 143- 151.
34
ZHANG Q L , GUO X Y , CAO X D , et al. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol[J]. Chinese Journal of Catalysis, 2015, 36 (7): 975- 981.
doi: 10.1016/S1872-2067(15)60851-8
LIU J F , FENG Y J , LV J W , et al. Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element[J]. Chinese Journal of Materials Research, 2008, 22 (6): 593- 598.
doi: 10.3321/j.issn:1005-3093.2008.06.007
36
WANG Y Q , GU B , XU W L . Electro-catalytic degradation of phenol on several metal-oxide anodes[J]. Journal of Hazardous Materials, 2009, 162 (2/3): 1159- 1164.
37
HAO X , WEI Y , YANG H . Surface analysis of Ti/Sb-SnO2/PbO2 electrode after long time electrolysis[J]. Rare Metal Materials and Engineering, 2015, 44 (11): 2637- 2641.
doi: 10.1016/S1875-5372(16)60009-7
38
CHEN X , GUO H J , GUO S L , et al. Effect of SnO2 intermediate layer on performance of Ti/SnO2/MnO2 electrode during electrolytic-manganese process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (6): 1417- 1422.
doi: 10.1016/S1003-6326(17)60163-8
39
LIN H , NIU J F , DING S Y , et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2anodes[J]. Water Research, 2012, 46 (7): 2281- 2289.
doi: 10.1016/j.watres.2012.01.053
40
DUAN X Y , ZHAO C M , LIU W , et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol[J]. Electrochimica Acta, 2017, 240, 424- 436.
doi: 10.1016/j.electacta.2017.04.114
41
梁镇海.固溶体中间层钛基氧化物阳极研究[D].太原: 太原理工大学, 2007.
41
LIANG Z H. Study on Ti/MO2 anode with intermediate layers of oxide solid solution[D]. Taiyuan: Taiyuan University of Technology, 2007.
SONG X L , LIANG Z H . Lifetime and electrochemical properties of Ti/MnO2 electrodes with multivariant intermediate layers[J]. Functional Materials, 2012, 43 (9): 1143- 1146.
doi: 10.3969/j.issn.1001-9731.2012.09.014
ZHENG C. Effect of Introduction of intermediate layers and addition of neodymium oxide on properties of Ti-based PbO2 coated electrodes[D].Xi'an: Xi'an University of Architecture and Technology, 2017.
44
LI X , XU H , YAN W . Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF)[J]. Applied Surface Science, 2016, 389, 278- 286.
doi: 10.1016/j.apsusc.2016.07.123
45
SUBBARAO A N , VENKATARANGAIAH V T , NAGARAJAPPA G B , et al. Enhancement in the photo-electrocatalytic activity of SnO2-Sb2O4 mixed metal oxide anode by nano-WO3 modification: application to trypan blue dye degradation[J]. Journal of Environmental Chemical Engineering, 2017, 5, 4969- 4979.
doi: 10.1016/j.jece.2017.09.033
YU L H , XUE J Q , JIANG M , et al. Influence of the ionic liquid[Emim]BF4 on electrochemical performance of lead dioxide electrode[J]. Rare Metal Materials and Engineering, 2015, 44 (8): 1932- 1936.
47
COMNINELLIS C , VERCESI G P . Characterization of DSA®-type oxygen evolving electrodes: choice of a coating[J]. Journal of Applied Electrochemistry, 1991, 21 (4): 335- 345.
doi: 10.1007/BF01020219
48
YAO Y W , REN B , YANG Y , et al. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process[J]. Journal of Hazardous Materials, 2019, 361, 141- 151.
doi: 10.1016/j.jhazmat.2018.08.081
FU F , YANG W H , WANG H H . Preparation and performance of Ti-based lead dioxide electrode modified with polyethylene glycol[J]. Journal of Inorganic Materials, 2010, 25 (6): 653- 658.
YANG W T , YANG W H , FU F . Preparation and characterization of PbO2 electrode modified with a mixture of PEG and CPB[J]. Chinese Journal of Materials Research, 2012, 26 (1): 8- 12.
51
DUAN X Y , XU F , WANG Y N , et al. Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution[J]. Electrochimica Acta, 2018, 282, 662- 671.
doi: 10.1016/j.electacta.2018.06.098
52
YAO Y W , LI M Y , YANG Y , et al. Electrochemical degradation of insecticide hexazinone with Bi-doped PbO2 electrode: influencing factors, intermediates and degradation mechanism[J]. Chemosphere, 2019, 216, 812- 822.
doi: 10.1016/j.chemosphere.2018.10.191
53
FIGUEREDO-SOBRINHO F D A A D , LUCAS F W D S , FILL T P , et al. Insights into electrodegradation mechanism of tebuconazole pesticide on Bi-doped PbO2 electrodes[J]. Electrochimica Acta, 2015, 154, 278- 286.
doi: 10.1016/j.electacta.2014.12.062
54
SOUZA F L , AQUINO J M , IRIKURA K , et al. Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode[J]. Chemosphere, 2014, 109, 187- 194.
doi: 10.1016/j.chemosphere.2014.02.018
55
CAO J, ZHAO H, CAO F, et al. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes[J]. 2009, 54(9): 2595-2602.
56
XU M , WANG Z , WANG F , et al. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation[J]. Electrochimica Acta, 2016, 201, 240- 250.
doi: 10.1016/j.electacta.2016.03.168
57
FENG Y , CUI Y , LOGAN B , et al. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol[J]. Chemosphere, 2008, 70 (9): 1629- 1636.
doi: 10.1016/j.chemosphere.2007.07.083
58
WANG Y , SHEN Z , LI Y , et al. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2, 4-dichlorophenol in aqueous solution[J]. Chemosphere, 2010, 79 (10): 987- 996.
doi: 10.1016/j.chemosphere.2010.03.029
59
DAI Q , XIA Y , CHEN J . Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode[J]. Electrochimica Acta, 2016, 188, 871- 881.
doi: 10.1016/j.electacta.2015.10.120
60
YING Z , PING H , LINGPU J , et al. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R[J]. Journal of Colloid and Interface Science, 2019, 533, 750- 761.
doi: 10.1016/j.jcis.2018.09.003
61
XU Z , LIU H , NIU J , et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327, 144- 152.
doi: 10.1016/j.jhazmat.2016.12.056
XUE J Q , WANG L , YU L H , et al. Study on preparation of PbO2-polyaniline composite electrode by double pulse plating[J]. New Chemical Materials, 2018, 46 (7): 129- 132.
63
YANG H T , CHEN B M , LIU H R , et al. Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2-MnO2-WC-ZrO2 composite electrode material[J]. International Journal of Hydrogen Energy, 2014, 39, 3087- 3099.
doi: 10.1016/j.ijhydene.2013.12.091
64
BACKHURST J R , COULSON J M , GOODRIDGE F , et al. A preliminary investigation of fluidized bed electrodes[J]. Journal of the Electrochemical Society, 1969, 116 (11): 1600- 1607.
doi: 10.1149/1.2411628
65
ZHANG C , JIANG Y , LI Y , et al. Three-dimensional electrochemical process for wastewater treatment: a general review[J]. Chemical Engineering Journal, 2013, 228, 455- 467.
doi: 10.1016/j.cej.2013.05.033
66
LIU W , WANG X , TU X , et al. Treatment of pretreated coking wastewater by flocculation, alkali out, air stripping, and three-dimensional electrocatalytic oxidation with parallel plate electrodes[J]. Environmental Science & Pollution Research International, 2014, 21 (19): 11457- 11468.
67
RAMÍREZ G , RECIO F J , HERRASTI P , et al. Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nanotubes for the electrochemical oxidation of azo dyes[J]. Electrochimica Acta, 2016, 204, 9- 17.
doi: 10.1016/j.electacta.2016.04.054