Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (6): 62-72    DOI: 10.11868/j.issn.1001-4381.2019.000422
  综述 本期目录 | 过刊浏览 | 高级检索 |
用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展
唐长斌(), 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴
西安建筑科技大学 化学与化工学院, 西安 710055
Research progress of non-precious metal oxide coated anodes for electrocatalytic degradation of organic pollutants in water
Chang-bin TANG(), Yu-xuan LU, Fei WANG, Ping HUANG, Li-hua YU, Juan-qin XUE
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(3545 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

电催化氧化降解有机污染物是一种行之有效的水处理方法,高性能阳极材料是实现其功效的关键。利用在钛基体上涂覆铅系、锡系、锰系等非贵金属氧化物可方便制备出涂层阳极,同时可借助多样化的表面涂覆与改性技术来开发稳定性与催化活性均优异的阳极,极具发展前景。从基材加工、中间层结构优化及表面改性角度综述了非贵金属氧化物阳极稳定性优化技术手段;并从表面增效、作用区域扩大角度对其催化活性提升方法进行归纳,述评了涂层阳极改性机制;最后指出了非贵金属氧化物涂层阳极发展中进一步努力的方向,以期推动电催化氧化阳极发展及其在水处理中的应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐长斌
卢宇轩
王飞
黄平
于丽花
薛娟琴
关键词 非贵金属氧化物涂层阳极电催化氧化降解有机废水稳定性催化活性    
Abstract

Electrocatalytic oxidation is an effective water treatment method for degradation of organic pollutants, and the key to the technical advantages lies in anode materials with excellent performance. Ti-based anode can be conveniently prepared by coating a titanium substrate with a non-noble metal oxide such as lead, tin or manganese. At the same time, the anode materials with outstanding stability and catalytic activity can be obtained by various preparation and modification methods, which make it have great development prospects. Research progress on the stability optimization of non-precious metal oxide coating anode was reviewed from the perspective of substrate processing, intermediate layer optimization and surface modification. Catalytic activity enhancement was summarized from the aspect of surface synergism and the expansion of the action area, and the modification mechanism of coating anodes was commented. Finally, in order to promote the development of the electrocatalytic oxidation anode materials and its application in water treatment, development direction of non-precious metal oxide coated anodes was pointed out.

Key wordsnon-precious metal oxide coated anode    electrocatalytic oxidation degradation    organic wastewater    stability    catalytic activity
收稿日期: 2019-05-06      出版日期: 2020-06-15
中图分类号:  TQ153.6  
基金资助:国家自然科学基金项目(51874227);陕西省自然科学基金项目(2018JM5131);陕西省自然科学基金项目(2018JM5139)
通讯作者: 唐长斌     E-mail: tcbtop@126.com
作者简介: 唐长斌(1973—), 男, 副教授, 博士, 研究方向为电极材料及应用, 联系地址:陕西省西安市雁塔路13号西安建筑科技大学化学与化工学院(710055), tcbtop@126.com
引用本文:   
唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
Chang-bin TANG, Yu-xuan LU, Fei WANG, Ping HUANG, Li-hua YU, Juan-qin XUE. Research progress of non-precious metal oxide coated anodes for electrocatalytic degradation of organic pollutants in water. Journal of Materials Engineering, 2020, 48(6): 62-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000422      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/62
Fig.1  DSA的电化学工程应用(a)和水处理用DSA发展历程及特点(b)
Fig.2  TiO2纳米阵列结构及其涂覆过程[26-27]
(a)TiO2纳米棒阵列; (b)TiO2纳米管阵列;(1)俯视图;(2)横截面图;(c)金属氧化物在钛板与TiO2纳米管阵列上沉积过程示意图
Fig.3  引入中间层的阳极结构组成示意图
Fig.4  GNS-PbO2电极结构示意图[40]
Fig.5  三维电极反应器的几种典型结构[65]
(a)~(b)固定床反应器; (c)~(d)流化床反应器
1 YAO Y W , TENG G , YANG Y , et al. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: electrode characterization, influencing factors and degradation pathways[J]. Separation and Purification Technology, 2019, 211, 456- 466.
doi: 10.1016/j.seppur.2018.10.021
2 ZULOAGA O , NAVARRO P , BIZKARGUENAGA E , et al. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review[J]. Analytica Chimica Acta, 2012, 736, 7- 29.
doi: 10.1016/j.aca.2012.05.016
3 MARTÍNEZ-HUITLE C A , RODRIGO M A , SIRÉS I , et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115 (24): 13362- 13407.
doi: 10.1021/acs.chemrev.5b00361
4 COMNINELLIS C . Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochemical Acta, 1994, 39 (11/12): 1857- 1862.
5 PANIZZA M , CERISOLA G . Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109 (12): 6541- 6569.
doi: 10.1021/cr9001319
6 WU W , HUANG Z H , LIM T T . Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Applied Catalysis:A, 2014, 480, 58- 78.
doi: 10.1016/j.apcata.2014.04.035
7 SUBBARAO A N , VENKATARANGAIAH V T . Metal oxide-coated anodes in wastewater treatment[J]. Environmental Science and Pollution Research, 2014, 21 (5): 3197- 3217.
doi: 10.1007/s11356-013-2313-6
8 SHESTAKOVA M , SILLANPAA M . Electrode materials used for electrochemical oxidation of organic compounds in wastewater[J]. Reviews in Environmental Science and Biotechnology, 2017, 16 (2): 223- 238.
9 VARGAS R , BORRÁS C , MÉNDEZ D , et al. Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives[J]. Journal of Solid State Electrochemistry, 2016, 20 (4): 875- 893.
10 ZHANG W , GHALI E , HOULACHI G . Review of oxide coated catalytic titanium anodes performance for metal electrowinning[J]. Hydrometallurgy, 2017, 169, 456- 467.
doi: 10.1016/j.hydromet.2017.02.014
11 HAO J , MA J , LI C . Polyaniline-MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors[J]. Journal of Materials Chemistry, 2012, 22 (33): 16939- 16942.
doi: 10.1039/c2jm33249c
12 LI J , YANG Z , XU H , et al. Electrochemical treatment of mature landfill leachate using Ti/RuO2-IrO2 and Al electrode: optimization and mechanism[J]. RSC Advances, 2016, 6 (53): 47509- 47519.
doi: 10.1039/C6RA05080H
13 CAO H , CHEN M , WU L , et al. Electrochemical properties of IrO2 active anode with TNTs interlayer for oxygen evolution[J]. Applied Surface Science, 2018, 428, 861- 869.
doi: 10.1016/j.apsusc.2017.09.169
14 范莹莹, 陈阵, 李佳莹, 等. AEO改性二氧化铅电极在降解甲基橙过程中的电化学行为[J]. 材料工程, 2014, (7): 10- 15.
14 FAN Y Y , CHEN Z , LI J Y , et al. Electrochemical behavior of PbO2 electrode modified by AEO for the degradation of methyl orange[J]. Journal of Materials Engineering, 2014, (7): 10- 15.
15 ALAOUI A , KACEMI K E , ASS K E , et al. Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution[J]. Separation & Purification Technology, 2015, 154, 281- 289.
16 YU H , ZHANG X , ZHAO M , et al. Norfloxacin degradation by a green carbon black-Ti/SnO2-Sb electrochemical system in saline water[J]. Catalysis Today, 2019, 327, 308- 314.
doi: 10.1016/j.cattod.2018.04.034
17 XU F , CHANG L M , DUAN X Y , et al. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis[J]. Electrochimica Acta, 2019, 300, 53- 66.
doi: 10.1016/j.electacta.2019.01.090
18 TRASATTI S . Electrocatalysis: understanding the success of DSA®[J]. Electrochimica Acta, 2000, 45, 2377- 2385.
doi: 10.1016/S0013-4686(00)00338-8
19 BRAHIM M B , AMMAR H B , ABDELHéDI R , et al. Electrochemical removal of the insecticide imidacloprid from water on a boron-doped diamond and Ta/PbO2 anodes using anodic oxidation process[J]. Korean Journal of Chemical Engineering, 2016, 33 (9): 1- 8.
20 SAMET Y , AGENGUI L , ABDELHÉDI R . Anodic oxidation of chlorpyrifos in aqueous solution at lead dioxide electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 650 (1): 152- 158.
21 ELAISSAOUI I , AKROUT H , GRASSINI S , et al. Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO2 anodes[J]. Materials & Design, 2016, 110, 633- 643.
22 范亚卓.新型三维多孔钛阳极的微结构和性能[D].厦门: 厦门大学, 2016.
22 FAN Y Z. Microstructure and performances of novel three-dimensional porous titanium anodes[D]. Xiamen: Xiamen University, 2016.
23 LI G Z , LI G , WANG H , et al. Preparation of Sb doped nano SnO2/porous Ti electrode and its degradation of methylene orange[J]. Rare Metal Materials and Engineering, 2015, 44 (6): 1326- 1330.
doi: 10.1016/S1875-5372(15)30083-7
24 范亚卓, 王昆, 张颖. 多孔钛基贱金属阳极的性能和失效机理的研究[J]. 新技术新工艺, 2013, (11): 115- 117.
doi: 10.3969/j.issn.1003-5311.2013.11.041
24 FAN Y Z , WANG K , ZHANG Y . The research of performance and failure mechanisms for porous titanium-based low-price metal anodes[J]. New Technology & New Process, 2013, (11): 115- 117.
doi: 10.3969/j.issn.1003-5311.2013.11.041
25 XUE J Q , MA S W , BI Q , et al. Comparative study on the effects of different structural Ti substrates on the properties of SnO2 electrodes[J]. Journal of Alloys and Compounds, 2019, 773, 1040- 1047.
doi: 10.1016/j.jallcom.2018.09.227
26 SUN J K , JIANG Y , ZHONG X , et al. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells[J]. Nano Energy, 2017, 32, 130- 156.
doi: 10.1016/j.nanoen.2016.12.022
27 DAYANNE C M , MÓNICA C L , MARCO A Q , et al. Large disk electrodes of Ti/TiO2-nanotubes/PbO2 for environmental applications[J]. RSC Advances, 2015, 5, 31454- 31459.
doi: 10.1039/C4RA16723F
28 LI P , ZHAO G , CUI X , et al. Constructing stake structured TiO2-NTs/Sb-doped SnO2 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete mineralization of refractory aromatic acid[J]. The Journal of Physical Chemistry:C, 2009, 113 (6): 2375- 2383.
doi: 10.1021/jp8078106
29 李力成, 方东, 李广忠, 等. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28 (4): 589- 606.
29 LI L C , FANG D , LI G Z , et al. Mechanism and influence factors of valve-metal oxide nanotube arrays prepared by anodization process[J]. Progress in Chemistry, 2016, 28 (4): 589- 606.
30 姜俊峰, 孟惠民, 孙冬柏. 喷砂工艺对钛阳极表面形貌、电催化活性和寿命的影响[J]. 中国有色金属学报, 2010, (6): 1161- 1169.
30 JIANG J F , MENG H M , SUN D B . Effect of sand-blasting pretreatment on surface morphology, electrocatalytic activities and service life of Ti/IrO2·Ta2O5 anodes[J]. The Chinese Journal of Nonferrous Metals, 2010, (6): 1161- 1169.
31 罗志聪, 原辉, 齐民. 工业纯钛表面高能喷丸对溶胶-凝胶法制备羟基磷灰石涂层的影响[J]. 功能材料, 2008, (9): 1504- 1506.
doi: 10.3321/j.issn:1001-9731.2008.09.026
31 LUO Z C , YUAN H , QI M . The effect of high-energy shot peening commercial pure titanium on hydroxyapatite coating by sol-gel[J]. Journal of Functional Materials, 2008, (9): 1504- 1506.
doi: 10.3321/j.issn:1001-9731.2008.09.026
32 ANDRADE L S , LUÍS AUGUSTO R , ROCHA-FILHO R C , et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J]. Chemosphere, 2007, 66 (11): 2035- 2043.
doi: 10.1016/j.chemosphere.2006.10.028
33 唐长斌, 郑超, 于丽花, 等. 电镀镍中间层对钛基二氧化铅阳极性能的影响[J]. 稀有金属材料与工程, 2019, 48 (1): 143- 151.
33 TANG C B , ZHENG C , YU L H , et al. Effect of electroplating nickel inter-layer on performance of Ti-based lead dioxide electrodes[J]. Rare Metal Materials and Engineering, 2019, 48 (1): 143- 151.
34 ZHANG Q L , GUO X Y , CAO X D , et al. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol[J]. Chinese Journal of Catalysis, 2015, 36 (7): 975- 981.
doi: 10.1016/S1872-2067(15)60851-8
35 刘峻峰, 冯玉杰, 吕江维, 等. 含Mn中间层提高钛基SnO2电催化电极的稳定性[J]. 材料研究学报, 2008, 22 (6): 593- 598.
doi: 10.3321/j.issn:1005-3093.2008.06.007
35 LIU J F , FENG Y J , LV J W , et al. Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element[J]. Chinese Journal of Materials Research, 2008, 22 (6): 593- 598.
doi: 10.3321/j.issn:1005-3093.2008.06.007
36 WANG Y Q , GU B , XU W L . Electro-catalytic degradation of phenol on several metal-oxide anodes[J]. Journal of Hazardous Materials, 2009, 162 (2/3): 1159- 1164.
37 HAO X , WEI Y , YANG H . Surface analysis of Ti/Sb-SnO2/PbO2 electrode after long time electrolysis[J]. Rare Metal Materials and Engineering, 2015, 44 (11): 2637- 2641.
doi: 10.1016/S1875-5372(16)60009-7
38 CHEN X , GUO H J , GUO S L , et al. Effect of SnO2 intermediate layer on performance of Ti/SnO2/MnO2 electrode during electrolytic-manganese process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (6): 1417- 1422.
doi: 10.1016/S1003-6326(17)60163-8
39 LIN H , NIU J F , DING S Y , et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2anodes[J]. Water Research, 2012, 46 (7): 2281- 2289.
doi: 10.1016/j.watres.2012.01.053
40 DUAN X Y , ZHAO C M , LIU W , et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol[J]. Electrochimica Acta, 2017, 240, 424- 436.
doi: 10.1016/j.electacta.2017.04.114
41 梁镇海.固溶体中间层钛基氧化物阳极研究[D].太原: 太原理工大学, 2007.
41 LIANG Z H. Study on Ti/MO2 anode with intermediate layers of oxide solid solution[D]. Taiyuan: Taiyuan University of Technology, 2007.
42 宋秀丽, 梁镇海. 多元中间过渡层钛基氧化锰电极的寿命及电化学性能[J]. 功能材料, 2012, 43 (9): 1143- 1146.
doi: 10.3969/j.issn.1001-9731.2012.09.014
42 SONG X L , LIANG Z H . Lifetime and electrochemical properties of Ti/MnO2 electrodes with multivariant intermediate layers[J]. Functional Materials, 2012, 43 (9): 1143- 1146.
doi: 10.3969/j.issn.1001-9731.2012.09.014
43 郑超.中间层引入及氧化钕稀土添加对钛基PbO2涂层电极性能的影响[D].西安: 西安建筑科技大学, 2017.
43 ZHENG C. Effect of Introduction of intermediate layers and addition of neodymium oxide on properties of Ti-based PbO2 coated electrodes[D].Xi'an: Xi'an University of Architecture and Technology, 2017.
44 LI X , XU H , YAN W . Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF)[J]. Applied Surface Science, 2016, 389, 278- 286.
doi: 10.1016/j.apsusc.2016.07.123
45 SUBBARAO A N , VENKATARANGAIAH V T , NAGARAJAPPA G B , et al. Enhancement in the photo-electrocatalytic activity of SnO2-Sb2O4 mixed metal oxide anode by nano-WO3 modification: application to trypan blue dye degradation[J]. Journal of Environmental Chemical Engineering, 2017, 5, 4969- 4979.
doi: 10.1016/j.jece.2017.09.033
46 于丽花, 薛娟琴, 蒋朦, 等. 离子液体对PbO2电极电化学性能的影响[J]. 稀有金属材料与工程, 2015, 44 (8): 1932- 1936.
46 YU L H , XUE J Q , JIANG M , et al. Influence of the ionic liquid[Emim]BF4 on electrochemical performance of lead dioxide electrode[J]. Rare Metal Materials and Engineering, 2015, 44 (8): 1932- 1936.
47 COMNINELLIS C , VERCESI G P . Characterization of DSA®-type oxygen evolving electrodes: choice of a coating[J]. Journal of Applied Electrochemistry, 1991, 21 (4): 335- 345.
doi: 10.1007/BF01020219
48 YAO Y W , REN B , YANG Y , et al. Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process[J]. Journal of Hazardous Materials, 2019, 361, 141- 151.
doi: 10.1016/j.jhazmat.2018.08.081
49 付芳, 杨卫华, 王鸿辉. 聚乙二醇改性钛基PbO2电极的制备及性质研究[J]. 无机材料学报, 2010, 25 (6): 653- 658.
49 FU F , YANG W H , WANG H H . Preparation and performance of Ti-based lead dioxide electrode modified with polyethylene glycol[J]. Journal of Inorganic Materials, 2010, 25 (6): 653- 658.
50 杨武涛, 杨卫华, 付芳. PEG/CPB复配改性二氧化铅电极的制备和性能[J]. 材料研究学报, 2012, 26 (1): 8- 12.
50 YANG W T , YANG W H , FU F . Preparation and characterization of PbO2 electrode modified with a mixture of PEG and CPB[J]. Chinese Journal of Materials Research, 2012, 26 (1): 8- 12.
51 DUAN X Y , XU F , WANG Y N , et al. Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution[J]. Electrochimica Acta, 2018, 282, 662- 671.
doi: 10.1016/j.electacta.2018.06.098
52 YAO Y W , LI M Y , YANG Y , et al. Electrochemical degradation of insecticide hexazinone with Bi-doped PbO2 electrode: influencing factors, intermediates and degradation mechanism[J]. Chemosphere, 2019, 216, 812- 822.
doi: 10.1016/j.chemosphere.2018.10.191
53 FIGUEREDO-SOBRINHO F D A A D , LUCAS F W D S , FILL T P , et al. Insights into electrodegradation mechanism of tebuconazole pesticide on Bi-doped PbO2 electrodes[J]. Electrochimica Acta, 2015, 154, 278- 286.
doi: 10.1016/j.electacta.2014.12.062
54 SOUZA F L , AQUINO J M , IRIKURA K , et al. Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode[J]. Chemosphere, 2014, 109, 187- 194.
doi: 10.1016/j.chemosphere.2014.02.018
55 CAO J, ZHAO H, CAO F, et al. Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes[J]. 2009, 54(9): 2595-2602.
56 XU M , WANG Z , WANG F , et al. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation[J]. Electrochimica Acta, 2016, 201, 240- 250.
doi: 10.1016/j.electacta.2016.03.168
57 FENG Y , CUI Y , LOGAN B , et al. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol[J]. Chemosphere, 2008, 70 (9): 1629- 1636.
doi: 10.1016/j.chemosphere.2007.07.083
58 WANG Y , SHEN Z , LI Y , et al. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2, 4-dichlorophenol in aqueous solution[J]. Chemosphere, 2010, 79 (10): 987- 996.
doi: 10.1016/j.chemosphere.2010.03.029
59 DAI Q , XIA Y , CHEN J . Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode[J]. Electrochimica Acta, 2016, 188, 871- 881.
doi: 10.1016/j.electacta.2015.10.120
60 YING Z , PING H , LINGPU J , et al. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R[J]. Journal of Colloid and Interface Science, 2019, 533, 750- 761.
doi: 10.1016/j.jcis.2018.09.003
61 XU Z , LIU H , NIU J , et al. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater[J]. Journal of Hazardous Materials, 2017, 327, 144- 152.
doi: 10.1016/j.jhazmat.2016.12.056
62 薛娟琴, 王磊, 于丽花, 等. 双脉冲电镀制备PbO2-PANI复合电极的研究[J]. 化工新型材料, 2018, 46 (7): 129- 132.
62 XUE J Q , WANG L , YU L H , et al. Study on preparation of PbO2-polyaniline composite electrode by double pulse plating[J]. New Chemical Materials, 2018, 46 (7): 129- 132.
63 YANG H T , CHEN B M , LIU H R , et al. Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2-MnO2-WC-ZrO2 composite electrode material[J]. International Journal of Hydrogen Energy, 2014, 39, 3087- 3099.
doi: 10.1016/j.ijhydene.2013.12.091
64 BACKHURST J R , COULSON J M , GOODRIDGE F , et al. A preliminary investigation of fluidized bed electrodes[J]. Journal of the Electrochemical Society, 1969, 116 (11): 1600- 1607.
doi: 10.1149/1.2411628
65 ZHANG C , JIANG Y , LI Y , et al. Three-dimensional electrochemical process for wastewater treatment: a general review[J]. Chemical Engineering Journal, 2013, 228, 455- 467.
doi: 10.1016/j.cej.2013.05.033
66 LIU W , WANG X , TU X , et al. Treatment of pretreated coking wastewater by flocculation, alkali out, air stripping, and three-dimensional electrocatalytic oxidation with parallel plate electrodes[J]. Environmental Science & Pollution Research International, 2014, 21 (19): 11457- 11468.
67 RAMÍREZ G , RECIO F J , HERRASTI P , et al. Effect of RVC porosity on the performance of PbO2 composite coatings with titanate nanotubes for the electrochemical oxidation of azo dyes[J]. Electrochimica Acta, 2016, 204, 9- 17.
doi: 10.1016/j.electacta.2016.04.054
[1] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[2] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[3] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[4] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[5] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[6] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[7] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[8] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[9] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[10] 郑秋燕, 杨智, 李茂辉, 潘廷仙, 秦好丽, 田娟. 铁前驱体对FeN/ZIF-8催化剂氧还原活性的影响[J]. 材料工程, 2021, 49(6): 132-139.
[11] 朱雪洁, 钟诗江, 杨晓霞, 张学习, 钱明芳, 耿林. NiTi基形状记忆合金弹热效应及其应用研究进展[J]. 材料工程, 2021, 49(3): 1-13.
[12] 董亚光, 陈尚, 王俊升, 靳柯. 含BCC/B2共格结构多主元合金研究进展[J]. 材料工程, 2021, 49(2): 1-9.
[13] 时志, 李兴佳, 张修丽, 孟祥建, 黄志强, 张丹丹, 徐红霞. 温度和存储周期对聚(偏氟乙烯-三氟乙烯)超薄膜极化性能的影响[J]. 材料工程, 2021, 49(11): 90-97.
[14] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[15] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn