Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 160-167    DOI: 10.11868/j.issn.1001-4381.2019.000428
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究
孟凡善1, 李征2, 丁昊昊1, 王文健1, 刘启跃1
1. 西南交通大学 机械工程学院, 成都 610031;
2. 青岛理工大学(临沂) 机电工程系, 山东 临沂 273400
Tribological properties of nano-BN/TiN lubricating additives modified with oleic acid
MENG Fan-shan1, LI Zheng2, DING Hao-hao1, WANG Wen-jian1, LIU Qi-yue1
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Department of Mechanical and Electrical Engineering, Qingdao University of Technology(Linyi), Linyi 273400, Shandong, China
全文: PDF(6372 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 使用油酸对BN,TiN,BN/TiN纳米添加剂进行表面改性修饰,通过傅里叶红外光谱仪进行表征,利用四球摩擦磨损试验机考察润滑油纳米添加剂的摩擦学性能。结果表明:油酸成功枝接在纳米颗粒表面,提高其分散性能。与纯基础油相比,纳米添加剂工况摩擦因数降低11.7%,磨斑直径降低29.5%,磨斑表面未出现起皮脱落现象,沟槽深度、宽度明显降低,混合BN/TiN纳米添加剂表现出协同润滑作用。纳米BN,TiN颗粒能够进入摩擦副中,起到微轴承作用,降低摩擦磨损,进入摩擦副中的纳米BN与摩擦副基体材料发生化学反应,生成氮化硼、氧化硼、氧化铁等物质修复磨损表面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟凡善
李征
丁昊昊
王文健
刘启跃
关键词 纳米添加剂BNTiN自修复润滑机理    
Abstract:BN, TiN and BN/TiN nano-additives were modified by oleic acid, characterized by Fourier transform infrared spectroscopy. The tribological properties of lubricating oil nano-additives were tested by four-ball friction and wear tester. The results show that oleic acid is grafted onto the surface of nanoparticles to improve their dispersibility. Compared with pure base oil, lubricating oil with nano-additives reduces friction coefficient by 11.7% and wear scar diameter by 29.5%, respectively. No peeling and falling off appears on the surface of wear scar, and the depth and width of groove are obviously reduced, compared with single nano-additive BN or TiN, BN/TiN displays synergistic lubrication when mixed nano-additive BN/TiN is used. The nano-BN and TiN particles can enter the friction pair, play the role of micro-bearing, reduce friction and wear. The nano-BN entering the friction pair and reacting with the matrix material of the friction pair can form boron nitride, boron oxide and iron oxide to repair the wear surface.
Key wordsnano-additive    BN    TiN    self-repairing    lubrication mechanism
收稿日期: 2019-05-08      出版日期: 2020-05-28
中图分类号:  TH117.1  
通讯作者: 王文健(1980-),男,研究员,博士,研究方向:轮轨润滑剂设计,联系地址:四川省成都市二环路北一段111号西南交通大学摩擦学研究所(610031),E-mail:wwj527@163.com     E-mail: wwj527@163.com
引用本文:   
孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
MENG Fan-shan, LI Zheng, DING Hao-hao, WANG Wen-jian, LIU Qi-yue. Tribological properties of nano-BN/TiN lubricating additives modified with oleic acid. Journal of Materials Engineering, 2020, 48(5): 160-167.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000428      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/160
[1] SHAFI W K,CHAROO M S.Nanolubrication systems:an overview[J].Materials Today:Proceedings,2018,5(9):20621-20630.
[2] ESFE M H,ARANI A A A,ESFANDEH S,et al.Proposing new hybrid nano-engine oil for lubrication of internal combustion engines:preventing cold start engine damages and saving energy[J].Energy,2019,170:228-238.
[3] PODGORNIK B,KAFEXHIU F,KOSEC T,et al.Friction and anti-galling properties of hexagonal boron nitride (h-BN) in aluminium forming[J].Wear,2017,388:2-8.
[4] FANG J H,CHEN B H,DONG L.Friction and wear performance of magnesium alloy against steel under lubrication of rapeseed oil with BN-containing additive[J].China Petroleum Processing and Petrochemical Technology,2011,13(1):70-74.
[5] 宁洪涛.纳米材料合成及氮化硼的应用研究[D].青岛:山东科技大学,2006. NING H T.Study on the nanomaterial synthesized and application of boron nitride[D].Qingdao:Shandong University of Science and Technology,2006.
[6] 王永林,李迎吉.TiN涂层在一般零件表面的摩擦磨损性能[J].装备制造技术,2017(12):143-145. WANG Y L,LI Y J.The friction and wear properties of TiN coating on the surface of the general parts[J]. Equipment Manufacturing Technology,2017(12):143-145.
[7] POLCAR T,KUBART T,NOVÁK R,et al.Comparison of tribological behaviour of TiN,TiCN and CrN at elevated temperatures[J].Surface and Coatings Technology,2005,193(1):192-199.
[8] 阮亭纲,周桂源,谢先东,等. 钛基纳米润滑添加剂的减摩抗磨及自修复特性对比[J].中国表面工程,2015,28(4):47-53. RUAN T G,ZHOU G Y,XIE X D,et al.Comparison of friction reducing anti-wear and self-repairing properties of different Ti-base nanometer lubricating oil additives[J].China Surface Engineering,2015,28(4):47-53.
[9] 许一,南峰,徐滨士.凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J].材料工程,2016,44(10):41-46. XU Y,NAN F,XU B S.Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J].Journal of Materials Engineering,2016,44(10):41-46.
[10] ZHENG D,WU Y,LI Z,et al.Tribological properties of WS2/graphene nanocomposites as lubricating oil additives[J].RSC Advances,2017,7(23):14060-14068.
[11] LEE K,HWANG Y,CHEONG S,et al.Understanding the role of nanoparticles in nano-oil lubrication[J].Tribology Letters,2009, 35(2):127-131.
[12] 张世堂,赵海朝,乔玉林.少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J].材料导报,2018,32(24):4235-4239. ZHANG S T,ZHAO H C,QIAO Y L.Effect of less graphene-based SiO2 nanocomposite materials on water lubricity properties[J].Materials Reviews,2018,32(24):4235-4239.
[13] WANG X L,YIN Y L,ZHANG G N,et al.Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel[J].Physics Procedia,2013,50:466-472.
[14] LUO T,WEI X W,ZHAO H Y,et al.Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives[J].Ceramics International,2014,40(7):10103-10109.
[15] YANG Z H,SHI L,CHEN L Y,et al.Synthesis,characterization and properties of novel BN nanocages from a single-source precursor[J].Chemical Physics Letters,2005,405(1):229-233.
[16] QIAO Z J,GAO L,FENG Q,et al.Boron content on microstructure and mechanical properties of amorphous boron carbide by chemical vapor deposition[J].Journal of Inorganic Materials,2017,32(11):1228-1232.
[17] KRISHNA D N G,ANUSHREE C,GEORGE R P,et al.Phase identification in binary mixture of nanopowders from deconvoluted valence band spectra using X-ray photoelectron spectroscopy:case study with iron oxide and titania polymorphs[J].Applied Surface Science,2018,462:932-943.
[18] ZHOU Y,CAI Z B,PENG J F,et al.Tribo-chemical behavior of eutectoid steel during rolling contact friction[J].Applied Surface Science,2016,388:40-48.
[19] DING J H,FANG J H,CHEN B S,et al.Effect of oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester on biodegradability and tribological performance of mineral lubricating oil[J].China Petroleum Processing and Petrochemical Technology,2018,20(2):97-103.
[20] KHAI T V,NA H G,KWAK D S,et al.Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films[J].Chemical Engineering Journal,2012,211:369-377.
[21] OZAKI J,KIMURA N,ANAHARA T,et al.Preparation and oxygen reduction activity of BN-doped carbons[J].Carbon,2007,45(9):1847-1853.
[22] PRAKASH A,SUNDARAM K B.Deposition and XPS studies of dual sputtered BCN thin films[J].Diamond & Related Materials,2016,64:80-88.
[23] 杜勇慧,张波波,王少伟,等.利用球磨六角氮化硼制备立方氮化硼的研究[J].人工晶体学报,2016,45(10):2441-2445. DU Y H,ZHANG B B,WANG S W,et al.Synthesis of cubic boron nitride using ball milling hexagonal boron nitride[J].Journal of Synthetic Crystals,2016,45(10):2441-2445.
[24] 孙海珍.TiBCN高温陶瓷的XPS分析[J].现代技术陶瓷,2017,38(2):136-141. SUN H Z.XPS analysis of TiBCN high-temperature ceramics[J].Advanced Ceramics,2017,38(2):136-141.
[25] 梅堂杰,郭俊德,李月,等.片状纳米MoS2的制备及其在油润滑中的减摩抗磨性能研究[J].表面技术,2018,47(8):129-138. MEI T J,GUO J D,LI Y,et al.Preparation of flaky nano-MoS2 and its anti-friction and anti-wear performance in oil[J].Surface Technology,2018,47(8):129-138.
[26] 陈海龙,杨学锋,王守仁,等.改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J].材料工程,2019,47(6):108-113. CHEN H L,YANG X F,WANG S R,et al.Tribological properties of modified phenolic resin ceramic friction materials[J].Journal of Materials Engineering,2019,47(6):108-113.
[27] 高传平.磁性和粘土纳米颗粒在润滑油中的摩擦学性能研究[D].广州:华南理工大学,2014. GAO C P.Tribological properties of magnetic and clay nanoparticles in lubricating oil[D].Guangzhou:South China University of Technology,2014.
[1] 刘峰峰, 李玉雄, 隋展鹏, 蔡勇, 张永红, 蒋春萍. 非晶AlBN介质薄膜的制备及相关特性研究[J]. 材料工程, 2020, 48(6): 112-117.
[2] 高亮, 霍红宇, 周典瑞, 张宝艳, 胡君. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11): 68-75.
[3] 呼世磊, 刘盼, 崔燚, 倪洁, 吕东风, 魏恒勇, 卜景龙. P123对多孔TiN粉体孔结构及电化学性能的影响[J]. 材料工程, 2019, 47(9): 93-100.
[4] 沈自才, 夏彦, 丁义刚, 赵春晴, 杨艳斌. 4D打印及其关键技术[J]. 材料工程, 2019, 47(11): 11-18.
[5] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基呋喃衍生物在有机涂层中的应用[J]. 材料工程, 2019, 47(1): 42-49.
[6] 马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
[7] 艾青, 杨灿星, 黄仁忠, 杨艳飞, 邹文祥, 袁颂东. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性[J]. 材料工程, 2018, 46(11): 77-83.
[8] 于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
[9] 杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
[10] 林松盛, 周克崧, 代明江, 石倩, 胡芳, 侯惠君, 韦春贝, 刘建武. 钛合金表面Ti-TiN-Zr-ZrN多层膜制备及性能[J]. 材料工程, 2017, 45(6): 31-35.
[11] 方旭东, 王岩, 范光伟, 夏焱, 王志斌, 韩培德. 超超临界锅炉材料TP310HCbN(HR3C)持久及析出行为[J]. 材料工程, 2017, 45(6): 112-117.
[12] 李红, 陶博浩, 栗卓新, 郭福. 超声振动与激光加热耦合条件下Al基钎料在TiNi形状记忆合金表面润湿铺展行为[J]. 材料工程, 2016, 44(3): 66-71.
[13] 孙杰, 石超, 赵丹. NiAl/AlBN封严涂层的电偶腐蚀行为[J]. 材料工程, 2015, 43(11): 44-49.
[14] 颜培, 邓建新, 连云崧, 赵军, 陈振. 沉积时间对ZrTiN涂层微观结构及性能的影响[J]. 材料工程, 2012, 0(5): 30-34.
[15] 吴雪梅, 周元康, 杨绿, 王陈向, 李屹, 陈建海. 纳米坡缕石润滑油添加剂对45#钢摩擦副的抗磨及自修复性能[J]. 材料工程, 2012, 0(4): 82-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn