Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 149-156    DOI: 10.11868/j.issn.1001-4381.2019.000446
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响
张桂源1, 李于朋1, 宫文彪1, 宫明月2, 崔恒2
1. 长春工业大学 先进结构材料教育部重点实验室, 长春 130012;
2. 长春轨道客车股份有限公司, 长春 130062
Effect of Zn on interfacial microstructure and properties of steel/aluminum dissimilar metal friction stir welded joints
ZHANG Gui-yuan1, LI Yu-peng1, GONG Wen-biao1, GONG Ming-yue2, CUI Heng2
1. Key Laboratory of Advanced Structural Materials(Ministry of Education), Changchun University of Technology, Changchun 130012, China;
2. Changchun Railway Vehicles Co., Ltd., Changchun 130062, China
全文: PDF(7006 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用离子喷涂方法在钢侧喷涂厚度为0.4 mm的Zn粉,对厚度同为3 mm的6005A-T6铝合金与S420MC钢板进行搭接搅拌摩擦焊实验。采用金相显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)和显微硬度等方法研究Zn对焊缝界面形貌、微观组织结构、力学性能及界面生长的影响。结果表明:无Zn层钢/铝接头和有Zn层钢/铝接头均在界面处形成了搅拌焊特有的"飞边",并延伸至铝基体中形成机械咬合接头,界面处均有AlFe,AlFe3,Al13Fe4金属间化合物产生。有钢质颗粒弥散分布在无Zn层的钢/铝接头的铝基体中。Zn的添加降低了界面反应层厚度,钢/铝搅拌摩擦焊界面结合方式为"机械+冶金"。接头断裂位置均在界面处,无Zn层钢/铝断裂接头为典型的"韧-脆"混合型断裂,有Zn层钢/铝接头为韧性断裂。最高显微硬度值从无Zn层接头的388HV降低到有Zn层接头的210HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张桂源
李于朋
宫文彪
宫明月
崔恒
关键词 低碳钢铝合金界面组织性能金属间化合物    
Abstract:Zn powder with a thickness of 0.4 mm was sprayed on the steel side by ion spraying method The lap welding was carried out on the 3 mm thickness 6005A-T6 aluminum alloy and 3 mm thickness S420MC steel plate using FSW (friction stir welding). The effects of Zn on the interface morphology, microstructure, mechanical properties and interfacial growth of weld were studied by means of (XRD) and microhardness of (OM), scanning electron microscope (SEM), X-ray diffractometer and microhardness. The results show that both the steel/aluminum joint without Zn layer and the steel/aluminum joint with Zn layer form the special "flying edge" of friction stir welding at the interface and extending into aluminum matrix to form the joint of mechanical occlusion,AlFe,AlFe3,Al13Fe4 intermetallic compounds are produced at the interface. Steel particles are dispersed in aluminum matrix of steel/aluminum joint without Zn layer. The maximum tensile and shear load of the joint increase from 4826 N to 5628 N at the interface. The non-Zn layer steel/aluminum fracture joint is a typical "tough-brittle" hybrid fracture, and the Zn layer steel/aluminum joint is brittle fracture. The maximum microhardness value reduces from 388HV without Zn layer joint to 210HV with Zn layer joint.
Key wordslow carbon steel    aluminum alloy    interface    microstructure    property    intermetallic com-pound
收稿日期: 2019-05-13      出版日期: 2020-08-15
中图分类号:  TG456.9  
通讯作者: 宫文彪(1966-),男,教授,从事焊接及热喷涂方面的研究,联系地址:吉林省长春市延安大街2055号长春工业大学(130012),E-mail:gwbiao@163.com     E-mail: gwbiao@163.com
引用本文:   
张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
ZHANG Gui-yuan, LI Yu-peng, GONG Wen-biao, GONG Ming-yue, CUI Heng. Effect of Zn on interfacial microstructure and properties of steel/aluminum dissimilar metal friction stir welded joints. Journal of Materials Engineering, 2020, 48(8): 149-156.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000446      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/149
[1] 李亚江,王娟.异种难焊材料的焊接及工程应用[M].北京:化学工业出版社,2014:5-8. LI Y J,WANG J.Welding and engineering application of dissimilar weldable materials[M].Beijing:Chemical Industry Press,2014:5-8.
[2] CUI L,CHEN B,CHEN L,et al.Dual beam laser keyhole welding of steel/aluminum lapped joints[J].Journal of Materials Processing Technology,2018,256:87-97.
[3] HASANNIAH A,MOVAHEDI M.Welding of Al-Mg aluminum alloy to aluminum clad steel sheet using pulsed gas tungsten arc process[J].Journal of Manufacturing Processes,2018,31:494-501.
[4] YE Z,HUANG J,CHENG Z,et al.Study on butt joining 5052 aluminum alloy/Q235 mild steel by MIG-TIG double-sided arc welding-brazing process[J].Welding in the World,2017,62(1/2):1-10.
[5] LIN S B,SONG J L,YANG C L,et al.Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal[J].Materials & Design,2010,31(5):2637-2642.
[6] SONG J, LLIN S B,YANG C L,et al.Spreading behavior and microstructure characteristics of dissimilar metals TIG welding-brazing of aluminum alloy to stainless steel[J].Materials Science & Engineering:A,2009,509(1):31-40.
[7] 秦国梁,苏玉虎,王术军.铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J].金属学报,2012,48(8):126-132. QIN G L,SU Y H,WANG S J.Microstructure and properties of pulsed MIG arc melting-brazing joints for aluminum alloy/galvanized steel sheets[J].Acta Metallurgica Sinica,2012,48(8):126-132.
[8] 张鹏,崔建忠,杜云慧,等.钢-铝固液相复合中浸镀助焊剂的应用研究[J].金属学报,1997,33(8):869-873. ZHANG P,CUI J Z,DU Y H,et al.Study on application of steel-aluminum solid-liquid composite dip plating flux[J].Acta Meta-llurgica Sinica,1997,33(8):869-873.
[9] KOJI N,YOSHIHIRO O,TOMOKI H.Laser pressure welding or Zn-coated steel and pure aluminum[J].Laser Material Processing Conference,2007,522:436-442.
[10] 石红信,邱然锋,涂益民,等.激光滚压焊技术在异种金属连接中的应用[J].电工文摘,2011,40(2):37-41. SHI H X,QIU R F,TU Y M,et al.Application of laser rolling welding technology in dissimilar metal connection[J].Electrician Abstracts,2011,40(2):37-41.
[11] 崔佃忠,芦笙,崔晴晴,等.焊接热输入对铝/镀锌钢CMT熔-钎焊接头组织与性能的影响[J].焊接学报,2014,35(9):82-87. CHU D Z,LU S,CUI Q Q,et al.Effect of welding heat input on microstructure and properties of aluminum/galvanized steel CMT fusion-brazing joint[J].Transactions of the China Welding Institution,2014,35(9):82-87.
[12] BABU S,PANIGRAHI S K,JANAKI R G D,et al.Cold metal transfer welding of aluminium alloy AA 2219 to austenitic stainless steel AlSI 321[J].Journal of Materials Processing Technology,2019,266:155-164.
[13] ZHANG H T,FENG J C,HE P.Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium[J].Materials Science and Technology,2008,24(11):1346-1349.
[14] 顾玉芬,李杰,石玗,等.铝/钢异种金属电弧熔钎焊焊接接头的腐蚀性能[J].中国有色金属学报,2016,26(4):758-765. GU Y F,LI J,SHI Y,et al.Corrosion performance of aluminum/steel dissimilar metal arc fusion brazed joints[J].Transactions of Nonferrous Metals Society of China,2016,26(4):758-765.
[15] 杨硕,林健,杨上陆,等.钢/铝CMT接头熔合面积对接头抗剪强度及破坏模式的影响[J].材料工程,2014(4):34-39. YANG S,LIN J,YANG S L,et al.Effect of fusion area of steel/aluminum CMT joint on shear strength and failure mode of joint[J].Journal of Materials Engineering,2014(4):34-39.
[16] 张秋征,宫文彪,刘杰.6005A-T6铝合金厚板单面与双面搅拌摩擦焊的性能[J].材料热处理学报,2014,35(6):75-79. ZHANG Q Z,GONG W B,LIU J.Performance of single-sided and double-sided friction stir welding of 6005A-T6 aluminum alloy thick plate[J].Journal of Materials Heat Treatment,2014,35(6):75-79.
[17] 王希靖,达朝炳,李晶,等.搅拌摩擦焊缝中的洋葱环形成分析[J].中国有色金属学报,2006,16(10):1672-1677. WANG X J,DA C B,LI J,et al.Analysis of onion ring formation in friction stir weld[J].Transactions of Nonferrous Metals Society of China,2006,16(10):1672-1677.
[18] ELREFAEY A,GOUDA M,TAKAHASHI M,et al.Characte-rization of aluminum/steel lap joint by friction stir welding[J].Journal of Materials Engineering & Performance,2005,14(1):10-17.
[19] 柯黎明. 搅拌摩擦焊接头成型规律研究[D]. 北京:清华大学,2007. KE L M. Research on forming law of friction stir welding joint[D].Beijing:Tsinghua University,2007.
[20] COELHO R S,KOSTKA A,SANTOS J F D,et al.Friction-stir dissimilar welding of aluminium alloy to high strength steels:mechanical properties and their relation to microstructure[J].Materials Science and Engineering:A,2012,556:175-183.
[21] TANAKA T,MORISHIDE T,HIRATA T.Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys[J].Scripta Materialia,2009,61:756-759.
[22] 王美芬.建筑用不锈钢与铝合金的异质搅拌摩擦焊研究[J].热加工工艺,2015,44(5):194-199. WANG M F.Research on heterogeneous friction stir welding of stainless steel and aluminum alloy for construction[J].Thermal Processing,2015,44(5):194-199.
[23] REZA-E-RABBY M,ROSS K,OVERMAN N R,et al.Joining thick section aluminum to steel with suppressed FeAl intermeta-llic formation via friction stir dovetailing[J].Scripta Materialia,2018,148:63-67.
[24] AGHAJANI D H,KHODABAKHSHI F.Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel:numerical modeling and experimental study[J].The International Journal of Advanced Manufacturing,2018,18(6):66-72.
[25] MAHTO R P,BHOJE R,PAL S K,et al.A study on mechanical properties in friction stir lap welding of AA 6061-T6 and AlSI 304[J].Materials Science & Engineering:A,2016,652:136-144.
[26] ZHANG W H,QIU X M,SUN D Q,et al.Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanized high strength steel and aluminium alloy[J].Science and Technology of Welding and Joining,2011,16(2):153-161.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[6] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[9] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[10] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[11] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[12] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[13] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[14] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[15] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn