Effect of annealing process on interfacial microstructure and mechanical properties of Zn/AZ31/Zn clad sheets
XU Feng-guang1, LIU Yao2, MA Wen-jiang1, ZHANG Jing1
1. Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract:Zn/AZ31/Zn clad sheets were prepared by hot rolling process. The effects of annealing temperature and time on the interface microstructure and mechanical properties of the clad sheets were investigated. The results show that the annealing temperature has great influence on the formation of interfacial diffusion layer.The interfacial diffusion layer cannot be formed at low annealing temperature, but good metallurgical bonding interface can be obtained,which is composed of Mg4Zn7 and MgZn2 phases annealed at 200 ℃. The higher annealing temperature (300 ℃) leads to the precipitation of the brittle Mg2Zn11 phase at the interface, thereby inducing microcracks along the interface. At the same annealing temperature, the extension of time only affects the thickness of the diffusion layer, and has no effect on its phase formation. The strength of the sheets is reduced after annealing, but the plasticity is improved. The clad sheets obtain better mechanical properties when annealed at 200 ℃ for 1 h.
许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
XU Feng-guang, LIU Yao, MA Wen-jiang, ZHANG Jing. Effect of annealing process on interfacial microstructure and mechanical properties of Zn/AZ31/Zn clad sheets. Journal of Materials Engineering, 2020, 48(8): 142-148.
[1] 杨媛,李加强,宋宏宝,等. 镁合金的应用及其成形技术研究现状[J]. 热加工工艺, 2013, 42(8):24-27. YANG Y, LI J Q, SONG H B, et al. Research situation on application of magnesium alloys and its forming technology[J]. Hot Working Technology, 2013, 42(8):24-27.
[2] 刘军,张金玲,渠治波,等. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程,2018, 46(6):73-79. LIU J, ZHANG J L, QU Z B, et al. Effect of rare earth Gd on corrosion resistance of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2018, 46(6):73-79.
[3] 赵曦,贾瑞灵,周伟光,等. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程, 2017, 45(4):41-50. ZHAO X, JIA R L, ZHOU W G, et al. Effect of rare earth on corrosion products and impedance behavior of AZ91 magnesium alloy under dry-wet cycles[J]. Journal of Materials Engineering, 2017, 45(4):41-50.
[4] YI A, DU J, WANG J, et al. Preparation and characterization of colored Ti/Zr conversion coating on AZ91D magnesium alloy[J].Surface and Coatings Technology, 2015, 276:239-247.
[5] 黄献丽,何美凤,李俊,等. 脉冲电镀锌镁合金及其腐蚀行为研究[J]. 材料导报, 2013, 27(24):92-94. HUANG X L, HE M F, LI J, et al. Pulsed electrodeposition of Zn-Mg alloy and its corrosion behavior[J]. Materials Review, 2013, 27(24):92-94.
[6] YAN D, YU G, HU B, et al. An innovative procedure of electroless nickel plating in fluoride-free bath used for AZ91D magnesium alloy[J]. Journal of Alloys and Compounds, 2015, 653:271-278.
[7] ZHANG C H, HUANG X M, SHENG N, et al. A zinc dipping technique for Mg-16Li-5Al-0.5RE alloy at room temperature[J]. Materials and Corrosion, 2014, 64(6):509-515.
[8] ZHANG S Y, LI Q, CHEN B, et al. Electrodeposition of zinc on AZ91D magnesium alloy pre-treated by stannate conversion coatings[J]. Materials and Corrosion, 2010, 61(10):860-865.
[9] BYUN J M, BANG S R, KIM H W, et al. Effect of heat treatment on corrosion resistance and adhesion property in Zn-Mg-Zn multi-layer coated steel prepared by PVD process[J]. Surface and Coatings Technology, 2017, 309:1010-1014.
[10] WANG H, YU B, WANG W, et al. Improved corrosion resistance of AZ91D magnesium alloy by a zinc-yttrium coating[J]. Journal of Alloys and Compounds, 2014, 582:457-460.
[11] SUN A, SUI X, LI H, et al. Interface microstructure and mechanical properties of zinc-aluminum thermal diffusion coating on AZ31 magnesium alloy[J]. Materials & Design, 2015, 67:280-284.
[12] LEE K S, KIM J S, JO Y M, et al. Interface-correlated deformation behavior of a stainless steel-Al-Mg 3-ply composite[J]. Materials Characterization, 2013, 75:138-149.
[13] LEON M D, SHIN H S. Weldability assessment of Mg alloy (AZ31B) sheets by an ultrasonic spot welding method[J]. Journal of Materials Processing Technology, 2017, 243:1-8.
[14] 吴琼,杨素媛. AZ31/1060爆炸复合板界面区组织与性能研究[J]. 稀有金属, 2016, 40(10):996-1001. WU Q, YANG S Y. Microstructure and properties of bonding interface in explosive welded AZ31/1060 composite plate[J]. Chinese Journal of Rare Metals, 2016, 40(10):996-1001.
[15] BINA M H, DEHGHANI F, SALIMI M. Effect of heat treatment on bonding interface in explosive welded copper/stainless steel[J]. Materials & Design, 2013, 45:504-509.
[16] DEHSORKHI R N, QODS F, TAJALLY M. Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process[J]. Materials Science and Engineering:A, 2011, 530:63-72.
[17] LEE K S, LEE Y S, KWON Y N. Influence of secondary warm rolling on the interface microstructure and mechanical properties of a roll-bonded three-ply Al/Mg/Al sheet[J]. Materials Science and Engineering:A, 2014, 606:205-213.
[18] 刘兴海,张焜禹,董丽,等. Al-Mg-Al复合板抗拉强度研究[J]. 材料导报, 2014, 28(10):101-104. LIU X H, ZHANG K Y, DONG L, et al. Study on tensile strength of Al-Mg-Al laminated plate[J]. Materials Review, 2014, 28(10):101-104.
[19] DAS S K, KIM Y M, HA T K, et al. Investigation of anisotropic diffusion behavior of Zn in hcp Mg and interdiffusion coefficients of intermediate phases in the Mg-Zn system[J]. Calphad, 2013, 42:51-58.
[20] KAMMERER C C, BEHDAD S, ZHOU L, et al. Diffusion kinetics, mechanical properties, and crystallographic characterization of intermetallic compounds in the Mg-Zn binary system[J]. Intermetallics, 2015, 67:145-155.
[21] GHOSH P, MEZBAHUL-ISLAM M, MEDRAJ M. Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems[J]. Calphad, 2012, 36:28-43.