Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (10): 96-104    DOI: 10.11868/j.issn.1001-4381.2019.000482
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析
熊伟腾1,2, 王云英1,*(), 范金娟2, 肖淑华2
1 南昌航空大学 材料科学与工程学院, 南昌 330063
2 中国航发北京航空材料研究院 失效分析中心, 北京 100095
Correlation analysis between tensile fracture morphology and tensile temperature of non-oriented acrylic sheet
Wei-teng XIONG1,2, Yun-ying WANG1,*(), Jin-juan FAN2, Shu-hua XIAO2
1 School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 Failure Analysis Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4306 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为探究非定向有机玻璃断口定量表征方法及其断口形貌参数与拉伸温度的相关性,以航空有机玻璃YB-2为研究对象,首先采用体视显微镜和三维激光扫描仪测量了不同拉伸温度下的断口雾状区尺寸和表面粗糙度均值${\bar R}$a,其次通过扫描电镜-盒维数法测算了断口雾状区的分形维数均值${\bar D}$,最后通过两个假设推算了有机玻璃断裂形成雾状区时消耗的能量,并与断口雾状区的分形维数进行联系。结果得出:当拉伸速率一定时,拉伸温度由-55℃提升至60℃,断口雾状区的尺寸${\bar I}$3从1.257 mm升高至4.978 mm,${\bar R}$a从0.517 μm降低到0.330 μm,${\bar D}$从1.357升高至1.579,拉伸温度分别与断口雾状区尺寸、表面粗糙度、分形维数的拟合曲线的拟合度因子均高于0.9,拟合程度较高。研究表明:有机玻璃拉伸断口的形貌参数与其断裂条件存在一定的相关性,雾状区形成时消耗的能量与其分形维数呈正相关关系,该研究结果可为有机玻璃断口定量分析奠定一定的基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊伟腾
王云英
范金娟
肖淑华
关键词 非定向航空有机玻璃断口形貌特征分形维数    
Abstract

In order to explore the quantitative characterization method of non-oriented acrylic sheet fracture and the correlation between the fracture morphology of acrylic sheet and tensile temperature. The non-oriented acrylic sheet for aircraft was used as the research object. Firstly, the size and surface roughness of the mist region were measured by stereo microscope and 3D Laster Scanner(LEXT). Secondly, the fracture was measured by box counting method. Finally, the energy consumed by the rupture of the acrylic sheet to form the mist zone was estimated by two hypotheses and was related to the fractal dimension of the fractured mist zone. The results show that when the stretching rate is constant, the stretching temperature is raised from -55 ℃ to 60 ℃, the size of the fractured mist zone ${\bar I}$3 is increased from 1.257 mm to 4.978 mm, and the surface roughness ${\bar R}$a is reduced from 0.517 μm to 0.330 μm, the fractal dimension ${\bar D}$is increased from 1.357 to 1.579. The fitting degree factors of the fitting curves of the tensile temperature and the size, surface roughness and fractal dimension of the fracture foggy area are higher than 0.9, and there fitting degree of these curves are higher. Therefore, the morphological parameters of the tensile fracture of the acrylic sheet have a certain correlation with the fracture conditions, and the energy consumed in the formation of the mist region of the acrylic sheet is positively correlated with its fractal dimension.

Key wordsnon-oriented    acrylic sheet for aircraft    fracture    morphology characteristics    fractal dimension
收稿日期: 2019-05-24      出版日期: 2020-10-17
中图分类号:  TQ325  
基金资助:航空科学基金(20120956005)
通讯作者: 王云英     E-mail: yywang4321@126.com
作者简介: 王云英(1963-),女,博士,教授,研究方向为高分子材料的改性、老化特征及寿命评价, 联系地址:江西省南昌市丰和南大道696号南昌航空大学材料科学与工程学院(330063),E-mail: yywang4321@126.com
引用本文:   
熊伟腾, 王云英, 范金娟, 肖淑华. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020, 48(10): 96-104.
Wei-teng XIONG, Yun-ying WANG, Jin-juan FAN, Shu-hua XIAO. Correlation analysis between tensile fracture morphology and tensile temperature of non-oriented acrylic sheet. Journal of Materials Engineering, 2020, 48(10): 96-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000482      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/96
Fig.1  有机玻璃断口宏观形貌
Fig.2  特征花样及其示意图
(a)“礼花状”特征花样及其示意图; (b)“羽毛状”特征花样及其示意图
T/℃ σ/GPa σ/GPa SD
-55 108.32 109.45 109.12 115.71 110.02 110.52 2.964
-20 98.29 96.01 90.50 95.77 95.95 95.30 2.878
0 73.32 70.80 71.31 75.06 69.82 72.06 2.108
23 68.94 65.77 68.57 68.94 68.95 68.23 1.387
60 43.81 44.05 43.53 43.80 43.76 43.79 0.185
Table 1  有机玻璃不同温度下的拉伸强度
Fig.3  有机玻璃温度-拉伸强度拟合曲线及误差棒图
Fig.4  有机玻璃不同起源位置断口形貌
(a)平角扇形源区; (b)直角扇形源区
Fig.5  不同温度下断裂的断口形貌对比
(a)-55 ℃; (b)60 ℃
T/℃ ${\bar l}$1/mm ${\bar l}$2/mm ${\bar l}$3/mm
-55 0.193 1.450 1.257
-20 0.383 1.953 1.570
0 0.544 2.851 2.307
23 0.663 3.538 2.875
60 0.814 5.792 4.978
Table 2  不同温度下的特征区域尺寸
Fig.6  特征区域尺寸拟合曲线
T/℃ Ra/μm ${\bar R}$a/μm
-55 0.458 0.454 0.563 0.570 0.541 0.517
-20 0.422 0.449 0.478 0.483 0.382 0.443
0 0.419 0.422 0.397 0.426 0.390 0.411
23 0.354 0.345 0.337 0.345 0.331 0.342
60 0.344 0.331 0.323 0.326 0.325 0.330
Table 3  不同温度下产生的有机玻璃断口雾状区的表面粗糙度
Fig.7  雾状区 ${\bar R}$a 拟合曲线
Fig.8  LEXT观察的断口雾状区三维形貌
(a)-55 ℃; (b)60 ℃
Fig.9  编程过程示意图
(a)扫描电镜裁截图; (b)二值化处理图
Fig.10  温度-分形维数拟合曲线
Fig.11  不同温度下雾状区形貌图
(a)-55 ℃; (b)60 ℃
T/℃ Pixel mean value E
-55 25425 1452755.01αβ
-20 39804 1680441.29αβ
0 79169 2344721.36αβ
23 140915 3288203.61αβ
60 359135 5189752.14αβ
Table 4  不同拉伸温度下的有机玻璃断口雾状区消耗能量
Fig.12  能量-分形维数拟合曲线
1 邓小秋, 李志强, 赵隆茂, 等. 有机玻璃力学性能的研究现状[J]. 力学与实践, 2014, 36 (5): 540- 549.
1 DENG X Q , LI Z Q , ZHAO L M , et al. A review on mechanical behaviour of PMMA[J]. Mechanics and Practice, 2014, 36 (5): 540- 549.
2 肖淑华, 范金娟, 于爱珍. 飞机座舱盖玻璃开裂原因分析[J]. 材料开发与应用, 2018, 33 (1): 72- 76.
2 XIAO S H , FAN J J , YU A Z . Analysis on the cause of cracks of an airplane canopy[J]. Material Development and Application, 2018, 33 (1): 72- 76.
3 何玉怀, 姜涛, 刘新灵, 等. 失效分析[M]. 北京: 国防工业出版社, 2017: 5- 6.
3 HE Y H , JIANG T , LIU X L , et al. Failure analysis[M]. Beijing: National Defense Industry Press, 2017: 5- 6.
4 王泓, 鄢君辉, 郑修麟. 有机玻璃疲劳裂纹扩展定量分析[J]. 机械科学与技术, 2001, 20 (1): 37- 38.
4 WANG H , YAN J H , ZHENG X L . The quantitative analysis on fatigue crack propagation of organic glass[J]. Mechanical Science and Technology, 2001, 20 (1): 37- 38.
5 杨佳, 孙佳思, 郑飞, 等. 有机玻璃断裂韧性的断面形貌分析[J]. 玻璃, 2017, (12): 36- 38.
5 YANG J , SUN J S , DENG F , et al. Analysis of section morphology for organic glass fracture toughness[J]. Glass, 2017, (12): 36- 38.
6 LACH R , GRELLMANN W . Mixed mode fracture mechanics behaviour of PMMA[J]. Macromolecular Symposia, 2017, 373 (1): 5- 8.
7 麻鸳鸳.脆性PMMA板动态断裂机理和裂纹传播形态研究[D].宁波: 宁波大学, 2014: 7-11.
7 MA Y Y. Research on fracture mechanism and crack propagation form in brittle PMMA plates[D]. Ningbo: Ningbo University, 2014: 7-11.
8 JIAO D , QU R T , ZHANG Z F . Macroscopic bifurcation and fracture mechanism of polymethyl methacrylate[J]. Advanced Engineering Materials, 2015, 17 (10): 1454- 1464.
doi: 10.1002/adem.201500021
9 FU H , WANG W , CHEN X , et al. Fractal and multifractal analysis of fracture surfaces caused by hydrogen embrittlement in high-Mn twinning/transformation-induced plasticity steels[J]. Applied Surface Science, 2019, 470, 870- 881.
doi: 10.1016/j.apsusc.2018.11.179
10 于杰, 何敏, 刘一春, 等. 聚合物材料断面形貌特征定量分析[J]. 贵州科学, 2003, 21 (1): 5- 8.
10 YU J , HE M , LIU Y C , et al. The quantitative analysis on fractured surface of polymer materials[J]. Guizhou Science, 2003, 21 (1): 5- 8.
11 于斌, 靳庆臣. 金属断口宏观形貌几何特征定量测量及分析[J]. 有色金属工程, 2010, 62 (3): 1- 5.
11 YU B , JIN Q C . Quantitative measurement and analysis of macroscopical morphology of fracture surface[J]. Nonferrous Metals Engineering, 2010, 62 (3): 1- 5.
12 沈喆.应力集中与结构弛豫对Zr55Cu30Ni5Al10非晶合金弯曲断裂行为的影响[D].哈尔滨: 哈尔滨工业大学, 2016: 64-67.
12 SHEN Z. Influence of stress concentration and structural relaxation on bending fracture behavior of a Zr55Cu30Ni5Al10 metallic glass[D]. Harbin: Harbin Institute of Technology, 2016: 64-67.
13 冯新, 马英杰, 李建崇, 等. 铸造、锻造和粉末冶金TC4钛合金损伤容限行为对比研究[J]. 精密成形工程, 2018, 10 (3): 46- 54.
13 FENG X , MA Y J , LI J C , et al. Comparative study on damage tolerance properties of TC4 titanium alloy manufactured by casting, forging and powder metallurgy[J]. Journal of Netshape Forming Engineering, 2018, 10 (3): 46- 54.
14 李静, 朱知寿, 王新南, 等. 准β热处理工艺对TC4-DT钛合金裂纹扩展行为的影响[J]. 稀有金属, 2017, 41 (7): 745- 750.
14 LI J , ZHU Z S , WANG X N , et al. Fatigue crack propagation behavior of TC4-DT alloy with quasi-β heat treatment[J]. Chinese Journal of Rare Metals, 2017, 41 (7): 745- 750.
15 陶春虎, 习年生, 张卫方, 等. 断口反推疲劳应力的新进展[J]. 航空材料学报, 2000, 20 (3): 158- 163.
15 TAO C H , XI N S , ZHANG W F , et al. Resent development of fractographic restrostimation on determining fatigue stress[J]. Journal of Aeronautical Materlals, 2000, 20 (3): 158- 163.
16 于斌.金属断口的计算机三维重构及定量分析[D].兰州: 兰州理工大学, 2008: 60-65.
16 YU B. Three-dimensional reconstruction and quantitative analysis of metallic fracture surface[D]. Lanzhou: Lanzhou University of Technology, 2008: 60-65.
17 梁基照, 吴成宝. 颗粒填充高分子复合材料拉伸断口的分形模型[J]. 材料工程, 2008, (1): 18- 20.
17 LIANG J Z , WU C B . Fractal model of tensile fracture for grain filled polymer composites[J]. Journal of Materials Engineering, 2008, (1): 18- 20.
18 CARNEY L R , MECHOLSKY J J J . Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel[J]. Materials Sciences & Applications, 2013, 4 (4): 258- 267.
19 齐菲.热冲击作用下多晶陶瓷微结构分形特征及损伤行为研究[D].哈尔滨: 哈尔滨工业大学, 2013: 10-11.
19 QI F. Fractal characteristics of microstructure and damage behavior in polycrystalline ceramics under thermal shocks[D]. Harbin: Harbin Institute of Technology, 2013: 10-11.
20 卢泽政, 李江腾. 岩状板岩断口分形与裂纹扩展速率研究[J]. 矿冶工程, 2017, 37 (5): 15- 18.
20 LU Z Z , LI J T . Fracture fractal and crack propagation rate of layered slate[J]. Mining and Metallurgical Engineering, 2017, 37 (5): 15- 18.
21 CHOI W , KIM J . Fractal dimensional analysis on glass fracture[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16 (7): 1655- 1660.
22 MARSHALL G P , COUTTS L H , WILLIAMS J G . Temperature effects in the fracture of PMMA[J]. Journal of Materials Science, 1974, 9 (9): 1409- 1419.
doi: 10.1007/BF00552926
23 熊伟腾.基于分形理论的非定向有机玻璃拉伸断口形貌研究[D].南昌: 南昌航空大学, 2019: 24-26.
23 XIONG W T. Study on tensile fracture morphology of non-oriented PMMA based on fractal theory[D]. Nanchang: Nanchang Hangkong University, 2019: 24-26.
24 何平笙. 新编高聚物的结构与性能[M]. 北京: 科学出版社, 2009: 158- 160.
24 HE P S . Structure and properties of polymers[M]. Beijing: Science Press, 2009: 158- 160.
25 张振亚.脆性材料中动态裂纹传播问题的研究[D].宁波: 宁波大学, 2013: 40-48.
25 ZHANG Z Y. Research on dynamic crack propagation in brittle materials[D]. Ningbo: Ningbo University, 2013: 40-48.
[1] 杨洋, 陈新文, 孙炜, 马丽婷, 王翔, 郭广平. 基于数字图像相关方法的CFRP层合板高温压缩性能实验研究[J]. 材料工程, 2021, 49(11): 62-72.
[2] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[3] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[4] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[5] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[6] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[7] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[8] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[9] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[10] 黄本生, 陈想, 陈勇彬, 李永斌. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程, 2016, 44(2): 107-114.
[11] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
[12] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[13] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[14] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[15] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn