Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 124-130    DOI: 10.11868/j.issn.1001-4381.2019.000487
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能
宋立奇1, 史运嘉1, 蔡彬1, 叶大萌2, 李梦佳3, 连娟1
1. 郑州大学 物理学院 材料物理重点实验室, 郑州 450052;
2. 郑州工程技术学院 机电与车辆工程学院, 郑州 450044;
3. 郑州大学 材料科学与工程学院, 郑州 450001
Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting
SONG Li-qi1, SHI Yun-jia1, CAI Bin1, YE Da-meng2, LI Meng-jia3, LIAN Juan1
1. Key Lab of Materials Physics, College of Physics, Zhengzhou University, Zhengzhou 450052, China;
2. College of Electrical and Mechanical and Automotive Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China;
3. College of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
全文: PDF(4624 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 通过综合分析硬度、电导率与拉伸性能等宏观特性及微观形貌特征,探讨激光选区熔化成形(selective laser melting,SLM)工艺参数与后期时效处理对SLM制备Al-3.4Mg-1.08Sc合金的微观组织、过饱和度及第二相析出行为的影响机理。利用致密度与硬度的变化规律,最终优化得到最佳的SLM工艺参数与时效制度。结果表明:实验制备的Al-Mg-Sc合金的微观组织由超细等轴晶及其周围相对较粗的柱状晶组成,合金在金相显微镜下可观察到熔池堆叠的形貌特征;Al-Mg-Sc合金在基板温度35℃下最佳的SLM制备工艺为扫描速率1600 mm/s、激光功率370 W。300℃下最佳时效时长为12 h,经过峰时效处理后实验合金的屈服强度可达479.0 MPa。在SLM快速冷却条件下,Al-Mg-Sc合金内部形成过饱和固溶体,在制备与热处理过程中析出大量的纳米级Al3(Sc,Zr)粒子,使得Al-Mg-Sc合金具备优异的力学性能;细晶强化与第二相强化是SLM制备Al-Mg-Sc合金展现出优异性能的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋立奇
史运嘉
蔡彬
叶大萌
李梦佳
连娟
关键词 激光选区熔化Al-Mg-Sc合金致密度显微组织力学性能时效处理    
Abstract:By comprehensive analysis of macroscopic characteristics of hardness, electrical conductivity and tensile properties and features of microcosmic morphology, the influence mechanism of process parameters of laser selective melting and following aging treatment on the microstructure, supersaturated solid solution and second-phase precipitation behavior of Al-3.4Mg-1.08Sc alloy fabricated by SLM was discussed. By utilizing the change rules of density and hardness,finally the optimum SLM process parameters and aging system were obtained.The results show that the microstructure of the Al-Mg-Sc alloy fabricated in this experiment is composed of ultrafine equiaxed grains and relatively coarser columnar grains around. The optimal fabrication parameter of Al-Mg-Sc alloy fabricated at platform temperature of 35 ℃ is conducted with scanning speed of 1600 mm/s, laser power of 370 W. The optimum aging time is 12 h at 300 ℃, the yield strength of studied alloy can reach 479.0 MPa through peak aging treatment. Under rapid cooling rate of SLM process, supersaturated solid solution is formed in Al-Mg-Sc alloy, and a large number of nanometer Al3(Sc,Zr) particles are precipitated during the fabrication and heat treatment process, which makes the Al-Mg-Sc alloy present excellent potential of mechanical properties. The fine grain strengthening and the second phase strengthening are the main factors for exhibiting properties of Al-Mg-Sc alloy fabricated by SLM.
Key wordsselective laser melting    Al-Mg-Sc alloy    density    microstructure    mechanical property    aging treatment
收稿日期: 2019-05-24      出版日期: 2020-11-20
中图分类号:  TG146.2+1  
基金资助: 
通讯作者: 史运嘉(1992-),女,讲师,博士,研究方向:高性能铝合金,联系地址:河南省郑州市二七区郑州大学南校区物理学院(450052),E-mail:yunjiashi@zzu.edu.cn     E-mail: yunjiashi@zzu.edu.cn
引用本文:   
宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
SONG Li-qi, SHI Yun-jia, CAI Bin, YE Da-meng, LI Meng-jia, LIAN Juan. Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting. Journal of Materials Engineering, 2020, 48(11): 124-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000487      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/124
[1] 张学军,唐思熠,肇恒跃,等.3D打印技术研究现状和关键技术[J].材料工程,2016,44(2):122-128. ZHANG X J,TANG S Y,ZHAO H Y,et al.Research status and key technologies of 3D printing[J].Journal of Materials Engineering,2016,44(2):122-128.
[2] SHI Y J,YANG K,KAIRY S K,et al.Effect of platform temperature on the porosity,microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Materials Science & Engineering:A,2018,732:41-52.
[3] HUANG H F,JIANG F,ZHOU J,et al.Effects of Al3(Sc,Zr) and shear band formation on the tensile properties and fracture behavior of Al-Mg-Sc-Zr Alloy[J]. Journal of Materials Engineering & Performance,2015,24(11):4244-4252.
[4] DAVYDOV V G,ELAGIN V I,ZAKHAROV V V, et al.Alloying aluminum alloys with scandium and zirconium additives[J]. Metal Science & Heat Treatment,1996,38(8):347-352.
[5] ZAKHAROV V V. Effect of scandium on the structure and properties of aluminum alloys[J].Metal Science & Heat Treatment,2003,45(7):246-253.
[6] MARQUIS E A,SEIDMAN D N,ASTA M,et al.Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy:experiments and computations[J].Acta Materialia,2006,54(1):119-130.
[7] SHI Y J,ROMETSCH P,YANG K,et al.Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters,2017,196:347-350.
[8] 章媛洁,张金良,张磊,等.3D打印非晶合金材料工艺及性能的研究进展[J].材料工程,2018,46(7):12-18. ZHANG Y J,ZHANG J L,ZHANG L,et al.Research progress on 3D printed metallic glasses materials,processing and property[J]. Journal of Materials Engineering,2018,46(7):12-18.
[9] LI R D,WANG M,YUAN T,et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy:processing,microstructure,and properties[J]. Powder Technology,2017,319:117-128.
[10] DAI D H,GU D D.Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlSi10Mg composites[J]. International Journal of Machine Tools & Manufacture,2016,100:14-24.
[11] SPIERINGS A B,DAWSON K,HEELING T,et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design,2017,115:52-63.
[12] SPIERINGS A B,DAWSON K,KERN K,et al. SLM-processed Sc-and Zr-modified Al-Mg alloy:mechanical properties and microstructural effects of heat treatment[J]. Materials Science & Engineering:A,2017,701:264-273.
[13] MASKERY I,ABOULKHAIR N T,CORFIELD M R,et al.Quantification and characterisation of porosity in selectively laser melted AlSi10Mg using X-ray computed tomography[J].Materials Characterization,2016,111:193-204.
[14] MARTIN J H,YAHATA B D,HUNDLEY J M,et al.3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672):365-369.
[15] 王从曾,刘会亭.材料性能学[M]. 北京:北京工业大学出版社,2001. WANG C Z,LIU H T.Properties of material[M].Beijing:Beijing University of Technology Press,2001.
[16] KISHCHIK A,MIKHAYLOVSKAYA A V,KOTOV A D,et al. Effect of homogenization treatment on superplastic properties of aluminum based alloy with minor Zr and Sc additions[J]. Defect and Diffusion Forum.2018,385:84-90.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[8] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[9] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[10] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[11] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[12] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[15] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn