Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (11): 124-130    DOI: 10.11868/j.issn.1001-4381.2019.000487
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能
宋立奇1, 史运嘉1,*(), 蔡彬1, 叶大萌2, 李梦佳3, 连娟1
1 郑州大学 物理学院 材料物理重点实验室, 郑州 450052
2 郑州工程技术学院 机电与车辆工程学院, 郑州 450044
3 郑州大学 材料科学与工程学院, 郑州 450001
Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting
Li-qi SONG1, Yun-jia SHI1,*(), Bin CAI1, Da-meng YE2, Meng-jia LI3, Juan LIAN1
1 Key Lab of Materials Physics, College of Physics, Zhengzhou University, Zhengzhou 450052, China
2 College of Electrical and Mechanical and Automotive Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China
3 College of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
全文: PDF(4624 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

通过综合分析硬度、电导率与拉伸性能等宏观特性及微观形貌特征,探讨激光选区熔化成形(selective laser melting,SLM)工艺参数与后期时效处理对SLM制备Al-3.4Mg-1.08Sc合金的微观组织、过饱和度及第二相析出行为的影响机理。利用致密度与硬度的变化规律,最终优化得到最佳的SLM工艺参数与时效制度。结果表明:实验制备的Al-Mg-Sc合金的微观组织由超细等轴晶及其周围相对较粗的柱状晶组成,合金在金相显微镜下可观察到熔池堆叠的形貌特征;Al-Mg-Sc合金在基板温度35℃下最佳的SLM制备工艺为扫描速率1600 mm/s、激光功率370 W。300℃下最佳时效时长为12 h,经过峰时效处理后实验合金的屈服强度可达479.0 MPa。在SLM快速冷却条件下,Al-Mg-Sc合金内部形成过饱和固溶体,在制备与热处理过程中析出大量的纳米级Al3(Sc,Zr)粒子,使得Al-Mg-Sc合金具备优异的力学性能;细晶强化与第二相强化是SLM制备Al-Mg-Sc合金展现出优异性能的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋立奇
史运嘉
蔡彬
叶大萌
李梦佳
连娟
关键词 激光选区熔化Al-Mg-Sc合金致密度显微组织力学性能时效处理    
Abstract

By comprehensive analysis of macroscopic characteristics of hardness, electrical conductivity and tensile properties and features of microcosmic morphology, the influence mechanism of process parameters of laser selective melting and following aging treatment on the microstructure, supersaturated solid solution and second-phase precipitation behavior of Al-3.4Mg-1.08Sc alloy fabricated by SLM was discussed. By utilizing the change rules of density and hardness, finally the optimum SLM process parameters and aging system were obtained.The results show that the microstructure of the Al-Mg-Sc alloy fabricated in this experiment is composed of ultrafine equiaxed grains and relatively coarser columnar grains around. The optimal fabrication parameter of Al-Mg-Sc alloy fabricated at platform temperature of 35 ℃ is conducted with scanning speed of 1600 mm/s, laser power of 370 W. The optimum aging time is 12 h at 300 ℃, the yield strength of studied alloy can reach 479.0 MPa through peak aging treatment. Under rapid cooling rate of SLM process, supersaturated solid solution is formed in Al-Mg-Sc alloy, and a large number of nanometer Al3(Sc, Zr) particles are precipitated during the fabrication and heat treatment process, which makes the Al-Mg-Sc alloy present excellent potential of mechanical properties. The fine grain strengthening and the second phase strengthening are the main factors for exhibiting properties of Al-Mg-Sc alloy fabricated by SLM.

Key wordsselective laser melting    Al-Mg-Sc alloy    density    microstructure    mechanical property    aging treatment
收稿日期: 2019-05-24      出版日期: 2020-11-20
中图分类号:  TG146.2+1  
基金资助:中国博士后科学基金面上资助项目(2018M632796);河南省高等学校重点科研项目计划(19A430024)
通讯作者: 史运嘉     E-mail: yunjiashi@zzu.edu.cn
作者简介: 史运嘉(1992-), 女, 讲师, 博士, 研究方向:高性能铝合金, 联系地址:河南省郑州市二七区郑州大学南校区物理学院(450052), E-mail:yunjiashi@zzu.edu.cn
引用本文:   
宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
Li-qi SONG, Yun-jia SHI, Bin CAI, Da-meng YE, Meng-jia LI, Juan LIAN. Microstructure and properties of high-strength Al-Mg-Sc alloys fabricated by selective laser melting. Journal of Materials Engineering, 2020, 48(11): 124-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000487      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/124
Si Cu Fe Mg Zn Cr Ni Mn Ti Sr Zr Sc Al
0.14 0.44 0.08 3.40 0.09 < 0.01 < 0.01 0.50 0.01 < 0.001 0.23 1.08 Bal
Table 1  合金的化学成分(质量分数/%)
Fig.1  Al-3.4Mg-1.08Sc合金粉末的二次电子像与粒径统计图
(a)形貌;(b)尺寸分布
Fig.2  扫描速率为1600 mm/s时合金的BSE形貌
Fig.3  扫描速率为1600 mm/s时合金的SEM图像与面扫描结果
(a)SEM图像;(b)Cu;(c)Mg;(d)Fe;(e)Al;(f)Sc;(g)Zr;(h)Mn
Fig.4  扫描速率为800 mm/s时合金的BSE形貌及检测位置
(a)熔池中心; (b)熔池底部
Position Mg Cu Si Mn Zn Fe Sc Zr Al
1 2.85 0.62 0.62 2.32 0.42 0.16 5.01 1.07 86.89
2 2.81 0.66 0.06 1.39 0.25 0.13 3.00 0.64 91.05
3 2.01 0.38 - 0.42 - - 2.47 1.59 93.12
4 2.00 0.46 - - - - 2.40 1.47 93.67
Table 2  扫描速率为800 mm/s时合金的EDX能谱结果(质量分数/%)
Fig.5  不同扫描速率下的合金相对密度
Fig.6  不同扫描速率下合金的表面孔隙形貌
(a)800 mm/s; (b)1200 mm/s;(c)1600 mm/s;(d)2400 mm/s; (e)3000 mm/s
Fig.7  不同扫描速率下合金的硬度
Fig.8  不同扫描速率下合金的时效硬化曲线与时效电导率曲线
(a)硬化曲线;(b)电导率曲线
Condition σ0.2/MPa σb/MPa δ/%
As-fabricated 287.4±3.2 336.1±1.9 7.0±1.1
Peak-aged 479.0±1.6 486.9±2.5 1.8±0.3
Table 3  扫描速率为1200 mm/s时合金时效处理前后拉伸性能
1 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
1 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
2 SHI Y J , YANG K , KAIRY S K , et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Materials Science & Engineering:A, 2018, 732, 41- 52.
3 HUANG H F , JIANG F , ZHOU J , et al. Effects of Al3(Sc, Zr) and shear band formation on the tensile properties and fracture behavior of Al-Mg-Sc-Zr Alloy[J]. Journal of Materials Engineering & Performance, 2015, 24 (11): 4244- 4252.
4 DAVYDOV V G , ELAGIN V I , ZAKHAROV V V , et al. Alloying aluminum alloys with scandium and zirconium additives[J]. Metal Science & Heat Treatment, 1996, 38 (8): 347- 352.
5 ZAKHAROV V V . Effect of scandium on the structure and properties of aluminum alloys[J]. Metal Science & Heat Treatment, 2003, 45 (7): 246- 253.
6 MARQUIS E A , SEIDMAN D N , ASTA M , et al. Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy:experiments and computations[J]. Acta Materialia, 2006, 54 (1): 119- 130.
doi: 10.1016/j.actamat.2005.08.035
7 SHI Y J , ROMETSCH P , YANG K , et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 2017, 196, 347- 350.
doi: 10.1016/j.matlet.2017.03.089
8 章媛洁, 张金良, 张磊, 等. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46 (7): 12- 18.
8 ZHANG Y J , ZHANG J L , ZHANG L , et al. Research progress on 3D printed metallic glasses materials, processing and property[J]. Journal of Materials Engineering, 2018, 46 (7): 12- 18.
9 LI R D , WANG M , YUAN T , et al. Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy:processing, microstructure, and properties[J]. Powder Technology, 2017, 319, 117- 128.
doi: 10.1016/j.powtec.2017.06.050
10 DAI D H , GU D D . Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlSi10Mg composites[J]. International Journal of Machine Tools & Manufacture, 2016, 100, 14- 24.
11 SPIERINGS A B , DAWSON K , HEELING T , et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115, 52- 63.
12 SPIERINGS A B , DAWSON K , KERN K , et al. SLM-processed Sc-and Zr-modified Al-Mg alloy:mechanical properties and microstructural effects of heat treatment[J]. Materials Science & Engineering:A, 2017, 701, 264- 273.
13 MASKERY I , ABOULKHAIR N T , CORFIELD M R , et al. Quantification and characterisation of porosity in selectively laser melted AlSi10Mg using X-ray computed tomography[J]. Materials Characterization, 2016, 111, 193- 204.
doi: 10.1016/j.matchar.2015.12.001
14 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
15 王从曾, 刘会亭. 材料性能学[M]. 北京: 北京工业大学出版社, 2001.
15 WANG C Z , LIU H T . Properties of material[M]. Beijing: Beijing University of Technology Press, 2001.
16 KISHCHIK A , MIKHAYLOVSKAYA A V , KOTOV A D , et al. Effect of homogenization treatment on superplastic properties of aluminum based alloy with minor Zr and Sc additions[J]. Defect and Diffusion Forum, 2018, 385, 84- 90.
doi: 10.4028/www.scientific.net/DDF.385.84
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[4] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[5] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[9] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[10] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[11] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[12] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[13] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[14] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[15] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn