Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 1-10    DOI: 10.11868/j.issn.1001-4381.2019.000500
  综述 本期目录 | 过刊浏览 | 高级检索 |
半纤维素基水凝胶制备及应用研究进展
温敬运1, 邱晓宇1, 李明飞1, 彭锋1, 边静1, 孙润仓2
1. 北京林业大学 林木生物质化学北京市重点实验室, 北京 100083;
2. 大连工业大学 生物质科学与工程中心 辽宁省制浆造纸工程高校重点实验室, 辽宁 大连 116034
Research progress in preparation and application of hemicellulose-based hydrogels
WEN Jing-yun1, QIU Xiao-yu1, LI Ming-fei1, PENG Feng1, BIAN Jing1, SUN Run-cang2
1. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China;
2. Liaoning Key Laboratory Pulp and Paper Engineering, Center for Lignocellulose Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
全文: PDF(1363 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 半纤维素基水凝胶是一种具有优异保水性、良好生物相容性和力学性能的三维网络状亲水聚合物,在软材料领域尤其是半纤维素基材料研究领域备受瞩目。本文综述了近年来半纤维素基水凝胶的研究进展,从化学交联和物理交联两个方面介绍了半纤维素基水凝胶的制备方法、形成机理和性能,比较了化学交联中光、酶、微波辐射和辉光放电电解等离子体等不同引发体系的差异,总结了半纤维素基水凝胶在药物控释、伤口敷料、高效吸附及3D打印等领域的最新应用和发展,并对半纤维素基水凝胶领域所面临的挑战进行了总结和展望,以期为新型半纤维素水凝胶的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温敬运
邱晓宇
李明飞
彭锋
边静
孙润仓
关键词 半纤维素水凝胶制备药物控释伤口敷料吸附    
Abstract:Hemicellulose-based hydrogels are three-dimensional networks formed by crosslinking hydrophilic polymers with tunable swelling behavior,acceptable biocompatibility and mechanical properties,and have received much attention in the field of soft materials especially in hemicellulose-based materials.Herein,recent advances and developments in hemicellulose-based hydrogels were reviewed.The preparation methods,mechanism of their gelation process,and the performance of the hemicellulose-based hydrogels were presented from both chemical and physical cross-linking approaches,while the differences in various initiation systems such as light,enzyme,microwave irradiation and glow discharge electrolysis plasma in chemical cross-linking were compared.The latest applications of hemicellulose-based hydrogels in drug-controlled release,wound dressing,water purification,3D printing dispersions, etc,were introduced, respectively.Finally,the challenges in the development of hemicellulose-based hydrogels were summarized briefly and future prospect was also given,which provides a reference for the synthesis of new hemicellulose-based hydrogels.
Key wordshemicellulose    hydrogel    preparation    drug-controlled release    wound dressing    adsorption
收稿日期: 2019-05-27      出版日期: 2020-03-03
中图分类号:  O613.71  
  O648.17  
通讯作者: 边静(1985-),女,副教授,博士,硕士生导师,主要从事林木生物质半纤维素组分高值化利用研究,联系地址:北京海淀区清华东路35号北京林业大学25号信箱(100083),E-mail:bianjing31@bjfu.edu.cn     E-mail: bianjing31@bjfu.edu.cn
引用本文:   
温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
WEN Jing-yun, QIU Xiao-yu, LI Ming-fei, PENG Feng, BIAN Jing, SUN Run-cang. Research progress in preparation and application of hemicellulose-based hydrogels. Journal of Materials Engineering, 2020, 48(2): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000500      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/1
[1] 尹大伟,周英,刘玉婷,等.水凝胶的最新研究进展[J].化工新型材料,2012,40(2):21-23. YIN D W,ZHOU Y,LIU Y T,et al.The new research development of hydrogel[J].New Chemical Materials,2012,40(2):21-23.
[2] AHMED E M.Hydrogel:preparation,characterization,and applications:a review[J]. Journal of Advanced Research, 2015,6(2):105-121.
[3] QI X M,GUAN Y,CHEN G G,et al.A non-covalent strategy for montmorillonite/xylose self-healing hydrogels[J].RSC Advances,2015,5(51):41006-41012.
[4] GABRIELII I,GATENHOLM P,GLASSER W G,et al.Separation,characterization and hydrogel-formation of hemicellulose from aspen wood[J]. Carbohydrate Polymers,2000,43(4):367-374.
[5] MARTÍNEZ-GÓMEZ F,GUERRERO J,MATSUHIRO B,et al.In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels[J].Carbohydrate Polymers,2017,155:182-191.
[6] AMIN M C I M,AHMAD N,HALIB N,et al.Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery[J].Carbohydrate Polymers,2012,88(2):465-473.
[7] PENG X W,REN J L,ZHONG L X,et al.Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt,and organic solvents[J].Journal of Agricultural and Food Chemistry,2011,59(15):8208-8215.
[8] LI X,PAN X.Hydrogels based on hemicellulose and lignin from lignocellulose biorefinery: a mini-review[J].Journal of Biobased Materials and Bioenergy,2010,4(4):289-297.
[9] JAYAKUMAR R,PRABAHARAN M,KUMAR P T S,et al.Biomaterials based on chitin and chitosan in wound dressing applications[J].Biotechnology Advances,2011,29(3):322-337.
[10] LI G X,DU Y M,TAO Y Z,et al.Iron(II)cross-linked chitin-based gel bead:preparation, magnetic property and adsorption of methyl orange[J].Carbohydrate Polymers,2010,82(3):706-713.
[11] LI T,LI L H,SUN H W,et al.Porous ionic membrane based flexible humidity sensor and its multifunctional applications[J].Advanced Science,2017,4(5):1600404.
[12] PENG F,PENG P,XU F,et al.Fractional purification and bioconversion of hemicelluloses[J].Biotechnology Advances,2012,30(4):879-903.
[13] SCHELLER H V,ULVSKOV P.Hemicelluloses[J].Annual Review of Plant Biology,2010,61:263-289.
[14] 程合丽,冯清华,陈洪雷,等.半纤维素基水凝胶制备方法研究进展[J].造纸科学与技术,2015,34(6):40-45. CHENG H L,FENG Q H,CHEN H L,et al.Research progress in preparation methods of hemicellulose-based hydrogels [J].Paper Science & Technology,2015,34(6):40-45.
[15] ELGUETA E,SÁNCHEZ J,DAX D,et al.Functionalized galactoglucomannan-based hydrogels for the removal of metal cations from aqueous solutions[J].Journal of Applied Polymer Science,2016,133(41):1-8.
[16] QI X M,CHEN G G,GONG X D,et al.Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension[J].Scientific Reports,2016,6:1-10.
[17] ROOS A A,EDLUND U,SJOBERG J,et al.Protein release from galactoglucomannan hydrogels:influence of substitutions and enzymatic hydrolysis by β-mannanase[J].Biomacromolecules,2008,9(8):2104-2110.
[18] PARIKKA K,NIKKILÄ I,PITKÄNEN L,et al.Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels[J].Carbohydrate Polymers,2017,175:377-386.
[19] MALEKI L,EDLUND U,ALBERTSSON A C.Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis[J].Biomacromolecules,2015,16(2):667-674.
[20] KARAASLAN M A,TSHABALALA M A,YELLE D J,et al.Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers[J].Carbohydrate Polymers,2011,86(1):192-201.
[21] AYOUB A,VENDITTI R A,PAWLAK J J,et al.Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal[J].ACS Sustainable Chemistry & Engineering,2013,1(9):1102-1109.
[22] LIU S J,CHEN F G,SONG X Y,et al.Preparation and characterization of temperature- and pH-sensitive hemicellulose-containing hydrogels[J].International Journal of Polymer Analysis and Characterization,2017,22(3):187-201.
[23] DAX D,CHÁVEZ M S,XU C L,et al.Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions[J].Carbohydrate Polymers,2014,111:797-805.
[24] LAWOKO M,HENRIKSSON G,GELLERSTEDT G.Characterisation of lignin-carbohydrate complexes(LCCs) of spruce wood(Picea abies L.)isolated with two methods[J].Holzforschung,2006,60(2):156-161.
[25] OINONEN P,ARESKOGH D,HENRIKSSON G.Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films[J].Carbohydrate Polymers,2013,95(2):690-696.
[26] OLSÉN P,UNDIN J,ODELIUS K,et al.Establishing α-bromo-γ-butyrolactone as a platform for synthesis of functional aliphatic polyesters-bridging the gap between ROP and SET-LRP[J].Polymer Chemistry,2014,5(12):3847-3854.
[27] YANG J Y,ZHOU X S,FANG J.Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels[J].Carbohydrate Polymers,2011,86(3):1113-1117.
[28] POHJANLEHTO H,SETÄLÄ H,KAMMIOVIRTA K,et al.The use of N,N'-diallylaldardiamides as cross-linkers in xylan derivatives-based hydrogels[J].Carbohydrate Research,2011,346(17):2736-275.
[29] MARKSTEDT K,XU W Y,LIU J L,et al.Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce[J].Carbohydrate Polymers,2017,157:1349-1357.
[30] KUZMENKO V,HÄGG D,TORIZ G,et al. In situ forming spruce xylan-based hydrogel for cell immobilization[J].Carbohydrate Polymers,2014,102:862-868.
[31] MEENA R,LEHNEN R,SAAKE B.Microwave-assisted synthesis of kC/xylan/PVP-based blend hydrogel materials:physicochemical and rheological studies[J].Cellulose,2014,21(1):553-568.
[32] ZHANG W M,ZHU S,BAI Y P,et al.Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels[J].Carbohydrate Polymers,2015,122:11-17.
[33] WANG Y,FENG Q L,WEI N,et al.A simple method for the production of hydrogels based on hemicellulose in aqueous solution[J].Polymer Science Series: B,2016,58(3):351-360.
[34] NGUYEN K T,WEST J L.Photopolymerizable hydrogels for tissue engineering applications[J].Biomaterials,2002,23(22):4307-4314.
[35] WIESBROCK F,HOOGENBOOM R,SCHUBERT U S.Microwave-assisted polymer synthesis:state-of-the-art and future perspectives[J].Macromolecular Rapid Communications,2004,25(20):1739-1764.
[36] ZHANG W M,LIANG Z L,FENG Q L,et al.Reed hemicellulose-based hydrogel prepared by glow discharge eletrolysis plasma and its adsorption properties for heavy metal ions[J].Fresenius Environ Bull,2016,25(6):1791-1798.
[37] GUAN Y,ZHANG B,TAN X,et al.Organic-inorganic composite films based on modified hemicelluloses with clay nanoplatelets[J].ACS Sustainable Chemistry & Engineering,2014,2(7):1811-1818.
[38] HASSAN C M,WARD J H,PEPPAS N A.Modeling of crystal dissolution of poly (vinyl alcohol) gels produced by freezing/thawing processes[J].Polymer,2000,41(18):6729-6739.
[39] GUAN Y,ZHANG B,BIAN J,et al.Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment[J].Cellulose,2014,21(3):1709-1721.
[40] GUAN Y,BIAN J,PENG F,et al.High strength of hemicelluloses based hydrogels by freeze/thaw technique[J].Carbohydrate Polymers, 2014,101:272-280.
[41] SAXENA A,ELDER T J,RAGAUSKAS A J.Moisture barrier properties of xylan composite films[J].Carbohydrate Polymers,2011,84(4):1371-1377.
[42] BAO Y P,ZHANG H,LUAN Q,et al.Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities[J].Carbohydrate Polymers,2018,184:66-73.
[43] WU S P,HU J,WEI L T,et al.Construction of porous chitosan-xylan-TiO2 hybrid with highly efficient sorption capability on heavy metals[J].Journal of Environmental Chemical Engineering,2014,2(3):1568-1577.
[44] KONG W Q,HUANG D Y,XU G B,et al.Graphene oxide/polyacrylamide/aluminum ion cross-linked carboxymethyl hemicellulose nanocomposite hydrogels with very tough and elastic properties[J].Chemistry-an Asian Journal,2016,11(11):1697-1704.
[45] ZHANG S,GUAN Y,FU G Q,et al.Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite[J].Journal of Nanomaterials,2014,2014(2):1-11.
[46] CHENG H L,FENG Q H,LIAO C A,et al.Removal of methylene blue with hemicellulose/clay hybrid hydrogels[J].Chinese Journal of Polymer Science,2016,34(6):709-719.
[47] KUMAR S U,KUMAR V,PRIYADARSHI R,et al.pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy[J].Carbohydrate Polymers,2018,188:252-259.
[48] GAO C D,REN J L,ZHAO C,et al.Xylan-based temperature/pH sensitive hydrogels for drug controlled release[J].Carbohydrate Polymers,2016,151:189-197.
[49] CAO X F,PENG X W,ZHONG L X,et al.Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier[J].Journal of Agricultural and Food Chemistry,2014,62(41):10000-10007.
[50] ZHAO W F,ODELIUS K,EDLUND U,et al.In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery[J]. Biomacromolecules,2015,16(8):2522-2528.
[51] GUAN Y,CHEN J H,QI X M,et al.Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property[J]. Industrial & Engineering Chemistry Research,2015,54(30):7393-7400.
[52] EDLUND U,ALBERTSSON A C.A microspheric system:hemicellulose-based hydrogels[J].Journal of Bioactive and Compatible Polymers,2008,23(2):171-186.
[53] SHEN X P,SHAMSHINA J L,BERTON P,et al.Hydrogels based on cellulose and chitin:fabrication,properties,and applications[J]. Green Chemistry,2016,18(1):53-75.
[54] ADUBA JR D C,AN S S,SELDERS G S,et al.Fabrication, characterization,and in vitro evaluation of silver-containing arabinoxylan foams as antimicrobial wound dressing[J].Journal of Biomedical Materials Research: Part A,2016,104(10):2456-2465.
[55] BHATTARAI N,GUNN J,ZHANG M Q.Chitosan-based hydrogels for controlled,localized drug delivery[J].Advanced Drug Delivery Reviews,2010,62(1):83-99.
[56] KRAJEWSKA B,WYDRO P,JANNCZYK A.Probing the modes of antibacterial activity of chitosan.Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films[J].Biomacromolecules, 2011, 12(11):4144-4152.
[57] LI X X,SHI X W,JIN Y,et al.Controllable antioxidative xylan-chitosan Maillard reaction products used for lipid food storage[J].Carbohydrate Polymers,2013,91(1):428-433.
[58] GUARINO V,ALVAREZ-PEREZ M A,BORRIELLO A,et al.Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration[J].Advanced Healthcare Materials,2013,2(1):218-227.
[59] ZHAO W F,GLAVAS L,ODELIUS K,et al.A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior[J].Polymer,2014,55(13):2967-2976.
[60] ZHAO W F,GLAVAS L,ODELIUS K,et al.Facile and green approach towards electrically conductive hemicellulose hydrogels with tunable conductivity and swelling behavior[J].Chemistry of Materials,2014,26(14):4265-4273.
[61] DRAGAN E S,APOPEI D F.Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes[J].Chemical Engineering Journal,2011,178:252-263.
[62] BANKEEREE W,PRASONGSUK S,IMAI T,et al.A novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of reactive black 5[J].BioResources,2016,11(3):6984-7000.
[63] SUN X F,GAN Z,JING Z X,et al.Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel[J].Journal of Applied Polymer Science,2015,132(10):1-10.
[64] PENG X W,ZHONG L X,REN J L,et al.Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel[J].Journal of Agricultural and Food Chemistry,2012,60(15):3909-3916.
[65] WU S P,DAI X Z,KAN J R,et al.Fabrication of carboxymethyl chitosan-hemicellulose resin for adsorptive removal of heavy metals from wastewater[J].Chinese Chemical Letters,2017,28(3):625-632.
[66] 李亚婧,孙晓锋,叶青,等.新型半纤维素基磁性水凝胶的制备及性能[J].物理化学学报,2014,30(1):111-120. LI Y J,SUN X F,YE Q,et al.Preparation and properties of a novel hemicellulose-based magnetic hydrogel[J].Acta Physico-Chimica Sinica,2014,30(1):111-120.
[67] PRAKOBNA K,KISONEN V,XU C L,et al.Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels[J].Journal of Materials Science,2015,50(22):7413-7423.
[68] MARKSTEDT K,ESCALANTE A,TORIZ G,et al.Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing[J].ACS Applied Materials & Interfaces,2017,9(46):40878-40886.
[1] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[2] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[3] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[4] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[5] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[6] 候冰娜, 沈惠玲, 李进, 谢旺强, 李征征. 基于动态化学键构建自愈合高分子水凝胶[J]. 材料工程, 2020, 48(4): 73-82.
[7] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[8] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[9] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[10] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[11] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[12] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[13] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[14] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[15] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn