Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 34-46    DOI: 10.11868/j.issn.1001-4381.2019.000509
  综述 本期目录 | 过刊浏览 | 高级检索 |
金属相二硫化钼在能量储存与转化中的应用进展
徐晨曦, 胡安俊, 舒朝著, 龙剑平
成都理工大学 材料与化学化工学院, 成都 610059
Application progress of metallic phase of molybdenum disulfide for energy storage and conversion
XU Chen-xi, HU An-jun, SHU Chao-zhu, LONG Jian-ping
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(8786 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 金属相二硫化钼具有较大的层间距、较高的导电率以及丰富的活性位点,在能量储存与转化领域显示出广阔的应用前景。本文综述金属相二硫化钼在能量储存与转化中的研究进展。首先介绍金属相二硫化钼的晶体结构与电子结构,概述金属相二硫化钼的制备方法,即自上而下(锂插层剥离法)和自下而上(溶剂/水热法)等。然后总结金属相二硫化钼及其复合材料在能量储存与转化领域如氢析出反应、锂(钠)离子电池和超级电容器中的应用进展。最后指出目前金属相二硫化钼还存在合成工艺不可控和结构稳定性差等问题,而对其结构和性质之间的深入研究有望从根本上改善金属相二硫化钼的性能及其在能量储存与转化领域中的实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晨曦
胡安俊
舒朝著
龙剑平
关键词 二硫化钼金属相结构制备应用    
Abstract:The metallic molybdenum disulfide exhibits large interlayer spacing, high electrical conductivity and abundant active sites, which shows wildly application prospects in the field of energy storage and conversion. The recent progress of metallic molybdenum disulfide in energy storage and conversion was reviewed. Firstly, the crystal and electronic structure of the metallic molybdenum disulfide were introduced, and the synthesis methods such as top-down (lithium intercalation stripping) and bottom-up (solvent/hydrothermal) were included. Then, the progress of metallic molybdenum disulfide and its composites in the fields such as hydrogen evolution reaction, lithium (sodium) ion batteries and supercapacitors were summarized. Finally, it is pointed out that the current challenges of metallic molybdenum disulfide are uncontrollable synthesis process and poor structural stability. The in-depth study on the structure and properties of metallic molybdenum disulfide is expected to fundamentally improve its performance and practical application in the field of energy storage and conversion.
Key wordsmolybdenum disulfide    metal phase    structure    preparation    application
收稿日期: 2019-05-29      出版日期: 2020-09-17
中图分类号:  TB39  
  TQ152  
通讯作者: 龙剑平(1973-),男,教授,博士,主要从事新能源材料研究,联系地址:四川省成都市成华区二仙桥东三路1号成都理工大学材料与化学化工学院测试楼509室(610059),E-mail:longjianping@cdut.cn     E-mail: longjianping@cdut.cn
引用本文:   
徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
XU Chen-xi, HU An-jun, SHU Chao-zhu, LONG Jian-ping. Application progress of metallic phase of molybdenum disulfide for energy storage and conversion. Journal of Materials Engineering, 2020, 48(9): 34-46.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000509      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/34
[1] CHEN G, WANG X, LI J, et al. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge:a case study in China[J]. Science of the Total Environment, 2019, 647:1433-1443.
[2] KHAN M A M, REHMAN S, AL-SULAIMAN F A. A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis:a review[J]. Renewable and Sustainable Energy Reviews, 2018, 97:456-477.
[3] O'MAHONY T, ESCARDÓ-SERRA P, DUFOUR J. Revisiting ISEW valuation approaches:the case of Spain including the costs of energy depletion and of climate change[J]. Ecological Economics, 2018, 144:292-303.
[4] WANG Q, LIU Z, JIN R, et al. SILAR preparation of Bi2S3 nanoparticles sensitized TiO2 nanotube arrays for efficient solar cells and photocatalysts[J]. Separation and Purification Technology, 2019, 210:798-803.
[5] NIU Y, QIAN X, XU C, et al. Cu-Ni-CoSex quaternary porous nanocubes as enhanced Pt-free electrocatalysts for highly efficient dye-sensitized solar cells and hydrogen evolution in alkaline medium[J]. Chemical Engineering Journal, 2019, 357:11-20.
[6] TIAN X, WANG Q, ZHAO Q, et al. SILAR deposition of CuO nanosheets on the TiO2 nanotube arrays for the high performance solar cells and photocatalysts[J]. Separation and Purification Technology, 2019, 209:368-374.
[7] ZHONG M, CHAI L, WANG Y. Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stability[J]. Applied Surface Science, 2019, 464:301-310.
[8] ZOU Z, ZHOU W, ZHANG Y, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film[J]. Chemical Engineering Journal, 2019, 357:45-55.
[9] 梁彤祥,刘娟,王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程, 2014(6):89-96. LIANG T X, LIU J, WANG C. Progress in electronic structure of graphene and its application[J]. Journal of Materials Engineering, 2014(6):89-96.
[10] AMBRUSI R E, PRONSATO M E. DFT study of Rh and Ti dimers decorating N-doped pyridinic and pyrrolic graphene for molecular and dissociative hydrogen adsorption[J]. Applied Surface Science, 2019, 464:243-254.
[11] 杨文彬,张丽,刘菁伟,等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3):91-97. YANG W B, ZHANG L, LIU J W, et al. Progress in preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43(3):91-97.
[12] YANG J, WANG L, MA Z, et al. In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance[J]. Journal of Colloid and Interface Science, 2019, 534:665-671.
[13] ZHENG F, ZHONG W, DENG Q, et al. Three-dimensional (3D) flower-like MoSe2/N-doped carbon composite as a long-life and high-rate anode material for sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 357:226-236.
[14] 朱刚兵,张得鹏,钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6):20-33. ZHU G B, ZHANG D P, QIAN J J. Research progress of molybdenum disulfide-based nanomaterials in the field of electrochemical sensing/hydrogen evolution[J]. Journal of Materials Engineering, 2019, 47(6):20-33.
[15] SHI S, SUN Z, HU Y H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2[J]. Journal of Materials Chemistry A, 2018, 6(47):23932-23977.
[16] KIRUBASANKAR B, PALANISAMY P, ARUNACHALAM S, et al. 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications[J]. Chemical Engineering Journal, 2019, 355:881-890.
[17] LV Y, LIU Y, LIU Y, et al. CoSe2/WSe2/WO3 hybrid nanowires on carbon cloth for efficient hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2018, 768:889-895.
[18] 刘洋洋,陈晓冬,王现英, 等. 类石墨烯过渡金属二硫化物的研究进展[J]. 材料导报, 2014, 28(3):23-27. LIU Y Y, CHEN X D, WANG X Y, et al. Research progress of graphene-like transition metal disulfides[J]. Materials Review, 2014, 28(3):23-27.
[19] SHIQUAN W, GUOHUA L I, GUODONG D U, et al. Hydrothermal synthesis of molybdenum disulfide for lithium ion battery applications[J]. Chinese Journal of Chemical Engineering, 2010, 18(6):910-913.
[20] JIAO Y, MUKHOPADHYAY A, MA Y, et al. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(15):1702779.
[21] ACERCE M, VOIRY D, CHHOWALLA M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4):313-318.
[22] BEBSON E E, ZHANG H, SCHUMAN S A, et al. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization[J]. Journal of the American Chemical Society, 2017, 140(1):441-450.
[23] LIU Q, SHANG Q, KHALIL A, et al. In situ integration of a metallic 1T-MoS2/CdS heterostructure as a means to promote visible-light-driven photocatalytic hydrogen evolution[J]. Chem Cat Chem, 2016, 8(16):2614-2619.
[24] HUANG Q, LI X, SUN M, et al. The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation:from the study of dynamic sodiation processes of MoS2 nanosheets[J]. Advanced Materials Interfaces, 2017, 4(15):1700171.
[25] XUYEN N T, TING J M. Hybridized 1T/2H MoS2 having controlled 1T concentrations and its use in supercapacitors[J]. Chemistry-A European Journal, 2017, 23(68):17348-17355.
[26] HU T, LI R, DONG J. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations[J]. Journal of Chemical Physics, 2013, 139(17):174702.
[27] ENYASHIN A N, YADGAROV L, HOUBEN L, et al. New route for stabilization of 1T-WS2 and MoS2 phases[J]. Journal of Physical Chemistry C, 2011, 115(50):24586-24591.
[28] WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2016, 4(2):1600289.
[29] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275.
[30] XIE J, ZHANG J, LI S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47):17881-17888.
[31] ZHAO W, DING F. Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer-a theoretical study[J]. Nanoscale, 2017, 9(6):2301-2309.
[32] WANG X, SHEN X, WANG Z, et al. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation[J]. ACS Nano, 2014, 8(11):11394-11400.
[33] DING Q, CZECH K J, ZHAO Y, et al. Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers[J]. ACS Applied Materials & Interfaces, 2017, 9(14):12734-12742.
[34] VOIRY D, SALEHI M, SILVA R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Letters, 2013, 13(12):6222-6227.
[35] LIU Q, FANG Q, CHU W, et al. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution[J]. Chemistry of Materials, 2017, 29(11):4738-4744.
[36] LIU Q, LI X, HE Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small, 2015, 11(41):5556-5564.
[37] TANG Q, JIANG D. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles[J]. ACS Catalysis, 2016, 6(8):4953-4961.
[38] KANG Y, NAJMAEI S, LIU Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer[J]. Advanced Materials, 2014, 26(37):6467-6471.
[39] ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2:rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4):1190-1209.
[40] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12):5111-5116.
[41] LEI Z, ZHAN J, TANG L, et al. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage[J]. Advanced Energy Materials, 2018, 8(19):1703482.
[42] CHHOWALLA M, VOIRY D, YANG J, et al. Phase-engineered transition-metal dichalcogenides for energy and electronics[J]. Mrs Bulletin, 2015, 40(7):585-591.
[43] ZHENG J, ZHANG H, DONG S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communications, 2014, 5:2995-3001.
[44] ACRIVOS J V, LIANG W Y, WILSON J A, et al. Optical studies of metal-semiconductor transmutations produced by intercalation[J]. Journal of Physics C, 1971, 4(1):1789-1796.
[45] RAO G V S, SHAFER M W, KAWARAZAKI S, et al. Superconductivity in alkaline earth metal and Yb intercalated group VI layered dichalcogenides[J]. Journal of Solid State Chemistry, 1974, 9(4):323-329.
[46] LIN X, XUE D, ZHAO L, et al. In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles:a three-dimensional heterostructure for high-performance flexible lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 356:483-491.
[47] ZHOU H, XIA X, LV P, et al. C@TiO2/MoO3 composite nanofibers with 1T-Phase MoS2 nanograin dopant and stabilized interfaces as anodes for Li- and Na-ion batteries[J]. Chem Sus Chem, 2018, 11(23):4060-4070.
[48] LU J, XIA G, GONG S, et al. Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage[J]. Journal of Materials Chemistry A, 2018, 6(26):12613-12622.
[49] XIANG T, FANG Q, XIE H, et al. Vertical 1T-MoS2 nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries[J]. Nanoscale, 2017, 9(21):6975-6983.
[50] VOIRY D, GOSWAMI A, KAPPERA R, et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering[J]. Nature Chemistry, 2015, 7(1):45-49.
[51] WANG H, LU Z, XU S, et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction[J]. Proceedings of the National Academy of Sciences, 2013, 110(49):19701-19706.
[52] LIU Y, XIE Y, LIU L, et al. Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers[J]. Catalysis Science & Technology, 2017, 7(23):5635-5643.
[53] ATTANAYAKE N H, THENUWARA A C, PATRA A, et al. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction[J]. ACS Energy Letters, 2017, 3(1):7-13.
[54] YANG S, ZHANG K, WANG C, et al. Hierarchical 1T-MoS2 nanotubular structures for enhanced supercapacitive performance[J]. Journal of Materials Chemistry A, 2017, 5(45):23704-23711.
[55] HUANG L, WEI Q, XU X, et al. Methyl-functionalized MoS2 nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage[J]. Physical Chemistry Chemical Physics, 2017, 19(21):13696-13702.
[56] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[57] LUKOWSKI M A, DANIELl A S, MENG F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28):10274-10277.
[58] ZHU P, CHEN Y, ZHOU Y, et al. A metallic MoS2 nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode[J]. Journal of Materials Chemistry A, 2018, 6(34):16458-16464.
[59] LI Y, WANG L, ZHANG S, et al. Cracked monolayer 1T MoS2 with abundant active sites for enhanced electrocatalytic hydrogen evolution[J]. Catalysis Science & Technology, 2017, 7(3):718-724.
[60] YIN Y, HAN J, ZHANG Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25):7965-7972.
[61] XIAO J, CHOI D, COSIMBESCU L, et al. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(16):4522-4524.
[62] QIU B, XING M, ZHANG J. Recent advances in three-dimensional graphene based materials for catalysis applications[J]. Chemical Society Reviews, 2018, 47(6):2165-2216.
[63] ZHOU Y, LIU Y, ZHAO W, et al. Rational design and synthesis of 3D MoS2 hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage[J]. Electrochimica Acta, 2016, 211:1048-1055.
[64] YU L, WU H B, LOU X W D. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research, 2017, 50(2):293-301.
[65] YU L, YANG J F, LOU X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage[J]. Angewandte Chemie International Edition, 2016, 55(43):13422-13426.
[66] SATHISH M, MITANI S, TOMAI T, et al. Ultrathin SnS2 nanoparticles on graphene nanosheets:synthesis, characterization, and Li-ion storage applications[J]. The Journal of Physical Chemistry C, 2012, 116(23):12475-12481.
[67] TANG W, WANG X, XIE D, et al. Hollow metallic 1T MoS2 arrays grown on carbon cloth:a freestanding electrode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(37):18318-18324.
[68] GENG X, JIAO Y, HAN Y, et al. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries[J]. Advanced Functional Materials, 2017, 27(40):1702998.
[69] KE Q, WANG J. Graphene-based materials for supercapacitor electrodes-a review[J]. Journal of Materiomics, 2016, 2(1):37-54.
[70] GENG X, ZHANG Y, HAN Y, et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors[J]. Nano Letters, 2017, 17(3):1825-1832.
[71] CAO X, TAN C, ZHANG X, et al. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion[J]. Advanced Materials, 2016, 28(29):6167-6196.
[72] ZHANG X, LAI Z, TAN C, et al. Solution-processed two-dimensional MoS2 nanosheets:preparation, hybridization, and applications[J]. Angewandte Chemie International Edition, 2016, 55(31):8816-8838.
[73] FENG J, SUN X, WU C, et al. Metallic few-layered VS2 ultrathin nanosheets:high two-dimensional conductivity for in-plane supercapacitors[J]. Journal of the American Chemical Society, 2011, 133(44):17832-17838.
[74] JOSEPH N, SHAFI P M, BOSE A C. Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application[J]. New Journal of Chemistry, 2018, 42(14):12082-12090.
[75] TANG H, WANG J, YIN H, et al. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes[J]. Advanced Materials, 2015, 27(6):1117-1123.
[76] XU J, WANG K, ZU S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano, 2010, 4(9):5019-5026.
[77] CHEN D, TANG L, LI J. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8):3157-3180.
[78] YANG C, CHEN Z, SHAKIR I, et al. Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors[J]. Nano Research, 2016, 9(4):951-962.
[1] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[4] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 陈子木, 胡正伟, 王倩妮, 史亦韦. 薄壁结构工业CT尺寸测量误差与极限[J]. 材料工程, 2020, 48(8): 169-176.
[7] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[8] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[9] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[10] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[11] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[12] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[15] 刘兴华, 王军丽, 王亚玲, 张利, 杨永珍, 刘旭光. 多色荧光碳点调控及其应用[J]. 材料工程, 2020, 48(4): 36-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn