Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 10-20    DOI: 10.11868/j.issn.1001-4381.2019.000510
  综述 本期目录 | 过刊浏览 | 高级检索 |
MXenes二维纳米材料及其在锂离子电池中的应用研究进展
齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九
中国航发北京航空材料研究院 北京石墨烯技术研究院有限公司, 北京 100095
Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries
QI Xin, CHEN Xiang, PENG Si-kan, WANG Ji-xian, WANG Nan, YAN Shao-jiu
Beijing Institute of Graphene Technology Co. Ltd., AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2239 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 锂离子电池被认为是富有前途的能源储存器件,寻找高性能锂电池新材料已成为全世界的研究热点。MXenes材料是一种新型过渡金属碳化物、氮化物或碳氮化物二维纳米材料的统称,具有比表面积大、导电性能好、储锂容量较高、循环和倍率性能优异等特点,是一种具有光明应用前景的锂离子电池材料。本文对MXenes材料在锂离子电池应用研究中的重大突破进行了综述,介绍了其制备方法、结构性能、储锂机理,归纳了其在锂离子电池中的具体应用及机制,分析了当前存在问题。综述指出MXenes材料研究,应利用其自身亲水性和导电性优势,在复合电极材料、自支撑电极材料等方面重点部署,为高性能锂子电池关键技术带来突破。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐新
陈翔
彭思侃
王继贤
王楠
燕绍九
关键词 MXenes锂离子电池电极材料二维纳米材料应用研究    
Abstract:Lithium-ion batteries (LIBs) have been considered a promising candidate of new energy storage device. Numerous researchers around the world are committed to develop new materials for high-performance LIBs. MXenes are new type of two-dimensional nanomaterials, which are composed of transition metal, carbides or/and nitrides, with large specific surface area, good electrical conductivity, high lithium storage capacity, excellent cycling and rate performances, etc., making them as LIBs materials with bright application prospects. A variety of MXenes materials (such as Ti2CTx, Ti3C2Tx, V2CTx, Nb2CTx, etc.) have been reported to be useful as LIBs electrode materials. In addition, MXenes materials can be combined with other LIBs active materials to build good conductive network, accelerate electron transport and lithium ion diffusion, and inhibit materials pulverization caused by volume expansion of active materials during electrochemical processes. Besides, researches on MXenes materials in solid electrolytes, binders, and conductive agents for LIBs have also been reported. In this paper, the major breakthroughs in the application of MXenes materials for LIBs were reviewed. The preparation methods, structural properties and lithium storage mechanism of MXenes materials were introduced. Moreover, the specific application, existing problems of MXenes materials in LIBs have been concentrated on.This review points out that researches of MXenes materials should take advantages of their hydrophilicity and conductivity poperties,and focus on the development of composite electrode meterials,self-supporting electrodes materials etc.,which will bring breakthroughs to the key technologies of high-performance lithium-ion batteries.
Key wordsMXenes    lithium-ion battery    electrode material    two-dimension nanomaterial    application research
收稿日期: 2019-05-28      出版日期: 2019-12-17
中图分类号:  O646.21  
  TB333  
基金资助: 
通讯作者: 燕绍九(1980-),男,研究员,博士,主要从事磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
QI Xin, CHEN Xiang, PENG Si-kan, WANG Ji-xian, WANG Nan, YAN Shao-jiu. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries. Journal of Materials Engineering, 2019, 47(12): 10-20.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000510      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/10
[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3):587-603.
[2] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262.
[3] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863.
[4] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[5] PARTOENS B, PEETERS F M. From graphene to graphite:electronic structure around the K point[J]. Physical Review B, 2006, 74(7):075404.
[6] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
[7] YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letter, 2008, 8(8):2277-2282.
[8] LV W, LI Z, DENG Y, et al. Graphene-based materials for electrochemical energy storage devices:opportunities and challenges[J]. Energy Storage Materials, 2016, 2:107-138.
[9] CHEN Y, YAO J, XU M K, et al. Electrically conductive and flame retardant graphene/brominated polystyrene/maleic anhydride grafted high density polyethylene nanocomposites with satisfactory mechanical properties[J]. Chinese Journal of Polymer Science, 2019, 37(5):509-517.
[10] ZHAO S, KANG W, XUE J. The potential application of phosphorene as an anode material in Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44):19046-19052.
[11] PANG J, BACHMATIUK A, YIN Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices[J]. Advanced Energy Materials, 2018, 8(8):1702093.
[12] GU J, MA J, DU Z, et al. Few-layer tin-antimony nanosheets:a novel 2D alloy for superior lithium storage[J]. Chemical Communications, 2019, 55(27):3975-3978.
[13] DAS P, WU Z S, LI F, et al. Two-dimensional energy materials:opportunities and perspectives[J]. Energy Storage Materials, 2019, in press.
[14] CAI X, LAI L, SHEN Z, et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells[J]. Journal of Materials Chemistry A, 2017, 5:15423-15446.
[15] 崔超婕,田佳瑞,杨周飞,等. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5):1-9. CUI C J, TIAN J R, YANG Z F, et al. Application prospect of graphene in Li-ion battery and supercapacitor[J]. Journal of Materials Engineering, 2019, 47(5):1-9.
[16] 邓凌峰,覃昱焜,彭辉艳,等. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2):9-15. DENG L F, QIN Y K, PENG H Y, et al. Preparation and characterization of LiFePO4/graphene composite cathode materials by high temperature reduction[J]. Journal of Materials Engineering, 2018, 46(2):9-15.
[17] NAGUIB M, COME J, DYATKIN B, et al. MXene:a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 16(1):61-64.
[18] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article:MXenes:a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
[19] 刘蕊,别永超,王媛,等. 二维晶体MXene的制备与研究进展[J]. 化学与黏合, 2018, 40(4):294-297. LIU R, BIE Y C, WANG Y, et al. Preparation and research progress of two-dimensional crystal MXene[J]. Chemistry and Adhesion, 2018, 40(4):294-297.
[20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[21] BARSOUM M W, POLUSHINA I K, RUD V Y, et al. Electrical conductivity, thermopower, and Hall effect of Ti3AlC2, Ti4AlN3 and Ti3SiC2[J]. Physical Review B, 2000, 62(15):1055051-1010198.
[22] ENYASHIN A N, IVANOVSKII A L. Structural and electronic properties and stability of MXenes Ti2C and Ti3C2functionalized by methoxy groups[J]. Journal of Physical Chemistry C, 2013, 117(26):13637-13643.
[23] ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11):4848-4856.
[24] TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40):16909-16916.
[25] ER D, LI J, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11173-11179.
[26] ZHANG C J, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2d titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 29(36):1702678.
[27] MASHTALIR O, LUKATSKAYA M R, ZHAO M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices[J].Advanced Materials, 2015, 27(23):3501-3506.
[28] 姚送送,李诺,叶红齐,等. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7):932-946. YAO S S, LI N, YE H Q, et al. Synthesis of two-dimensional MXene and their applications in electrochemical energy storage[J]. Progress in Chemistry, 2018, 30(7):932-946.
[29] 郑伟,杨莉,张培根,等. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15):2513-2537. ZHENG W, YANG L, ZHANG P G, et al. Energy storage and application for 2D nano-material MXenes[J]. Materials Review, 2018, 32(15):2513-2537.
[30] AHMED B, ANJUM D H, HEDHILI M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes[J]. Nanoscale, 2016, 8(14):7580-7587.
[31] AHMED B, ANJUM D H, GOGOTSI Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy, 2017, 34:249-256.
[32] WANG Y S, LI Y Y, QIU Z P, et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(24):11189-11197.
[33] ZHANG X, ZHANG Z H, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1):73-85.
[34] LI X C, QIAN Y H, LIU T, et al. Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets[J]. Journal of Materials Science, 2018, 53(15):11078-11090.
[35] XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn(X=C, N) monolayers[J]. Physical Review B, 2013, 87(23):235441.
[36] SUN Y, CHEN D, LIANG Z. Two-dimensional MXenes for energy storage and conversion applications[J]. Materials Today Energy, 2017, 5:22-36.
[37] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7):2374-2381.
[38] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529):78-81.
[39] GHIDIU M, NAGUIB M, SHI C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene)[J]. Chemical Communications, 2014, 50(67):9517-9520.
[40] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22):11385-11391.
[41] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21):6115-6119.
[42] YUAN W, CHENG L, WU H, et al. One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability[J]. Chemistry Communications, 2018, 54(22):2755-2758.
[43] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14(11):1135-1141.
[44] SHEIN I R, IVANOVSKII A L. Graphene-like nanocarbides and nanonitrides of d metals (MXenes):synthesis, properties and simulation[J]. Micro & Nano Letter, 2013, 8(2):59-62.
[45] WANG S, LI J X, DU Y L, et al. First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer[J]. Computational Materials Science, 2014, 83:290-293.
[46] GAN L Y, HUANG D, SCHWINGENSCHL G U. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C[J]. Journal of Materials Chemistry A, 2013, 1(43):13672.
[47] KARLSSON L H, BIRCH J, HALIM J, et al. Atomically resolved structural and chemical investigation of single MXene sheets[J]. Nano Letters, 2015, 15(8):4955-4960.
[48] WANG X, SHEN X, GAO Y, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2Tx[J]. Journal of the American Chemical Society, 2015, 137(7):2715-2721.
[49] LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene:preparation, properties, and applications[J]. Frontiers of Physics, 2015, 10(3):276-286.
[50] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2(12):1600255.
[51] XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society, 2014, 136(17):6385-6394.
[52] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43):15966-15969.
[53] KIM S J, NAGUIB M, ZHAO M, et al. High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries[J]. Electrochimica Acta, 2015, 163:246-251.
[54] WANG F, WANG Z J, ZHU J F, et al. Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium storage application[J]. Journal of Materials Science, 2016, 52(7):3556-3565.
[55] LIU Y T, ZHANG P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage[J]. Advanced Materials, 2018, 30(23):1707334.
[56] XIONG J, PAN L, WANG H, et al. Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots[J]. Electrochimica Acta, 2018, 268:503-511.
[57] TANG X, LIU H, GUO X, et al. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode[J]. Materials Chemistry Frontiers, 2018, 2(10):1811-1821.
[58] ZHANG C J, PARK S H, SERAL-ASCASO A, et al. High capacity silicon anodes enabled by MXene viscous aqueous ink[J]. Nature Communications, 2019, 10(1):849.
[59] LUO J, TAO X, ZHANG J, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene:promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10(2):2491-2499.
[60] CHEN C, XIE X, ANASORI B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(7):1846-1850.
[61] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
[62] YU P, CAO G, YI S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors[J]. Nanoscale, 2018, 10(13):5906-5913.
[63] LIU R, CAO W, HAN D, et al. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019:505-511.
[64] ZHAO M Q, TORELLI M, REN C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy, 2016, 30:603-613.
[65] LUO J, ZHANG W, YUAN H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano, 2017, 11(3):2459-2469.
[66] LI H, LU M, HAN W, et al. Employing MXene as a matrix for loading amorphous Si generated upon lithiation towards enhanced lithium-ion storage[J]. Journal of Energy Chemistry, 2019, 38:50-54.
[67] MA Z, ZHOU X, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(4):3634-3643.
[68] REN C E, ZHAO M Q, MAKARYAN T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance li-ion storage[J]. Chem Electro Chem, 2016, 3(5):689-693.
[69] BYEON A, ZHAO M Q, REN C E, et al. Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4296-4300.
[70] PAN Q W, ZHENG Y W, KOTA S, et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries[J]. Nanoscale Advances, 2019, 1(1):395-402.
[71] ZHANG C F J, KREMER M P, SERAL-ASCASO A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks[J]. Advanced Functional Materials, 2018, 28(9):1705506.
[72] ZHANG C F, NICOLOSI V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials, 2019, 16:102-125.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[3] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[4] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 党阿磊, 方成林, 赵曌, 赵廷凯, 李铁虎, 李昊. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14.
[7] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[8] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[9] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[12] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[13] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[14] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[15] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn