Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (1): 82-88    DOI: 10.11868/j.issn.1001-4381.2019.000531
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
微量Ag对ZL114A铝合金组织和力学性能的影响
吴桢1,2, 陆政1,2, 刘闪光1,2,*(), 罗传彪1,2
1 中国航发北京航空材料研究院, 北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Effect of minor Ag on microstructure and mechanical properties of ZL114A aluminum alloy
Zhen WU1,2, Zheng LU1,2, Shan-guang LIU1,2,*(), Chuan-biao LUO1,2
1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
全文: PDF(17491 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用万能电子拉伸试验机、光学显微镜、扫描电子显微镜、球差校正场发射透射电子显微镜等研究微量Ag元素对ZL114A铝合金力学性能和显微组织的影响。结果表明:随着Ag含量的增加,合金的抗拉强度、屈服强度提高,伸长率无明显变化;当Ag含量提高到0.55%(质量分数)时,ZL114A铝合金的峰时效抗拉强度从351 MPa提高到369 MPa,屈服强度从309 MPa提高到328 MPa,伸长率从2.36%提高到2.93%。ZL114A合金组织的α-Al枝晶和共晶Si无明显变化;Ag含量的提高,促进了GP区形核质点数量增加,引起了β"数量密度增加。在高角度环形暗场扫描透射(HAADF-STEM)模式下观察到Ag原子分布在β"相中,抑制了Mg原子和Si原子在β"相中扩散,导致β"相尺寸减小。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴桢
陆政
刘闪光
罗传彪
关键词 ZL114A铝合金Ag力学性能显微组织β"相    
Abstract

The effects of trace element Ag on the mechanical properties and microstructure of ZL114A aluminum alloy were investigated by the universal electron tensile testing machine, optical microscopy, scanning electron microscopy and spherical aberration correction field emission transmission electron microscopy. The results show that the tensile strength and yield strength of the alloy are enhanced with the increase of Ag content. However, no significant impact on the elongation is observed with the addition of Ag. When the Ag content reaches 0.55%(mass fraction), the peak aging tensile strength, yield strength, and elongation of ZL114A aluminum alloy increase from 351 MPa to 369 MPa, 309 MPa to 328 MPa, and 2.36% to 2.93%, respectively. There is no evidence of properties of α-Al dendrite and eutectic Si changing under the same condition. The increase of the Ag content promotes the amount of nucleation particles in GP zones, leading to the denser density of β". Ag atoms are observed in the β" phase under high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) mode, indicating that Ag atoms inhibit the diffusion of Mg atoms as well as Si atoms in the β" phase and the size of β" phase is reduced as a result.

Key wordsZL114A aluminum alloy    Ag    mechanical property    microstructure    β" phase
收稿日期: 2019-06-06      出版日期: 2021-01-14
中图分类号:  TG146.2+1  
通讯作者: 刘闪光     E-mail: liusg621@126.com
作者简介: 刘闪光(1983-), 男, 工程师, 博士, 主要从事铸造铝合金材料研发及成型工艺, 联系地址:北京市81信箱2分箱(100095), E-mail:liusg621@126.com
引用本文:   
吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
Zhen WU, Zheng LU, Shan-guang LIU, Chuan-biao LUO. Effect of minor Ag on microstructure and mechanical properties of ZL114A aluminum alloy. Journal of Materials Engineering, 2021, 49(1): 82-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000531      或      http://jme.biam.ac.cn/CN/Y2021/V49/I1/82
Alloy Mg Si Ag Ti Be B Fe Al
1# 0.56 7.26 - 0.104 0.005 0.004 0.03 Bal
2# 0.51 7.07 0.34 0.130 0.005 0.004 0.03 Bal
3# 0.53 7.11 0.46 0.110 0.006 0.002 0.03 Bal
4# 0.60 7.06 0.55 0.160 0.005 0.004 0.03 Bal
Table 1  实验合金成分(质量分数/%)
Fig.1  标准拉伸试棒尺寸
Fig.2  ZL114A合金时效力学性能曲线
(a)σb-t;(b)σp0.2-t;(c)δ-t
Fig.3  在175 ℃, 9 h时效条件下合金断口的SEM显微组织
(a)未添加Ag;(b)0.34%Ag;(c)0.46%Ag;(d)0.55%Ag
Fig.4  合金铸态偏光金相组织
(a)未添加Ag;(b)0.34%Ag;(c)0.46%Ag;(d)0.55%Ag
Fig.5  合金铸态金相显微组织
(a)未添加Ag;(b)0.34%Ag;(c)0.46%Ag;(d)0.55%Ag
Fig.6  在175 ℃, 9 h时效条件下1#合金透射电镜显微组织
(a)明场像;(b)选区电子衍射图
Fig.7  在175 ℃, 9 h时效条件下合金透射电镜显微组织
(a)未添加Ag;(b)0.34%Ag;(c)0.46%Ag;(d)0.55%Ag
Alloy Mean of length/nm Number density/(N·μm-2)
1# 18.20 2036
2# 11.92 3063
3# 11.18 4329
4# 9.47 5227
Table 2  在175 ℃, 9 h时效条件下合金的析出相平均长度和数量密度
Fig.8  在175 ℃, 9 h时效条件下4#合金的高角度环形暗场扫描透射照片
1 工程材料实用手册编辑委员会. 工程材料实用手册[M]. 北京: 中国标准出版社, 2001: 399.
1 Editorial board of engineering materials practical manual . Engineering materials practical manual[M]. Beijing: Standards Press of China, 2001: 399.
2 张希川, 安振之, 洪鹤, 等. ZL114A高强铸造铝合金的焊接[J]. 沈阳工业大学学报, 2002, 24 (1): 23- 25.
doi: 10.3969/j.issn.1000-1646.2002.01.008
2 ZHANG X C , AN Z Z , HONG H , et al. ZL114A welding of high-strength cast Al alloy[J]. Journal of Shenyang University of Technology, 2002, 24 (1): 23- 25.
doi: 10.3969/j.issn.1000-1646.2002.01.008
3 解传浩, 陈振中. A357铸造铝合金力学性能研究[J]. 飞机设计, 2010, 30 (3): 42- 44.
3 XIE C H , CHEN Z Z . Study on mechanical properties of A357 cast aluminum alloy[J]. Aircraft Design, 2010, 30 (3): 42- 44.
4 刘文祎, 徐聪, 刘茂文, 等. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47 (6): 129- 135.
4 LIU W Y , XU C , LIU M W , et al. Effect of rare earth element Gd on microstructure and mechanical properties of Al-Si-Mg cast alloy[J]. Journal of Materials Engineering, 2019, 47 (6): 129- 135.
5 TZENG Y C , NIEH J K , BOR H Y , et al. Effect of trace Be and Sc additions on the mechanical properties of A357 alloys[J]. Metals, 2018, 8 (3): 194.
doi: 10.3390/met8030194
6 YANG K V , ROMETSCH P , DAVIES C H J , et al. Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting[J]. Materials & Design, 2018, 154, 275- 290.
7 RAGAB K A , BOUAZARA M , CHEN X G . Influence of thermal aging parameters on the characteristics of aluminum semi-solid alloys[J]. Metals, 2018, 8 (10): 746.
doi: 10.3390/met8100746
8 单嘉立, 尹家新, 徐志锋, 等. 低压铸造ZL114A铝合金舱段壳体铸件工艺研究[J]. 特种铸造及有色合金, 2018, 38 (8): 856- 859.
8 SHAN J L , YIN J X , XU Z F , et al. Production of ZL114A alloy shell castings by low pressure casting[J]. Special Casting & Nonferrous Alloys, 2018, 38 (8): 856- 859.
9 樊振中, 王端志, 王鲲鹏, 等. Te、Sb对ZL114A合金T6态微观组织与力学性能的影响[J]. 稀有金属材料与工程, 2018, 47 (12): 3880- 3886.
9 FAN Z Z , WANG D Z , WANG K P , et al. Effect of Te, Sb addition on the microstructure and mechanical properties of ZL114A alloy in T6 state[J]. Rare Metal Materials and Engineering, 2018, 47 (12): 3880- 3886.
10 周永江, 张喆, 洪润洲. 热等静压对ZL114A铸件组织和性能的影响[J]. 特种铸造及有色合金, 2016, 36 (7): 687- 689.
10 ZHOU Y J , ZHANG Z , HONG R Z . Effects of HIP on microstructure and mechanical properties of ZL114A alloy castings[J]. Special Casting & Nonferrous Alloys, 2016, 36 (7): 687- 689.
11 丁科, 李炜, 毕娟娟, 等. 铝合金中Mg2Si相的时效析出过程[J]. 特种铸造及有色合金, 2009, 29 (12): 1160- 1164.
doi: 10.3870/tzzz.2009.12.026
11 DING K , LI W , BI J J , et al. Survey of aging precipitation process of Mg2Si phase in aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2009, 29 (12): 1160- 1164.
doi: 10.3870/tzzz.2009.12.026
12 GABER A , AFIFY N , MOSTAFA M S , et al. Effect of heat treatment on the precipitation in Al-1at.%Mg-xat.%Si (x=0.6, 1.0 and 1.6) alloys[J]. Journal of Alloys and Compounds, 2009, 477 (1/2): 295- 300.
13 杜宝帅, 李新梅, 张忠文, 等. Al-Mg-Si-Ag合金时效过程差热分析研究[J]. 热加工工艺, 2014, 43 (20): 188- 190.
13 DU B S , LI X M , ZHANG Z W , et al. Investigation on aging process of Al-Mg-Si-Ag alloy using differential thermal analysis[J]. Hot Working Technology, 2014, 43 (20): 188- 190.
14 KIM J H, MARIOARA C D, HOLMESTAD R, et al. Effects of microalloying elements (Cu, Ag) on nanocluster formation and age-hardening behavior in Al-Mg-Si alloys[C]//Proceedings of the 13th International Conference on Aluminum Alloys. Pittsburgh, Pennsylvania: TMS, 2012: 1057-1062.
15 宋艳芳, 潘清林, 曹素芳, 等. Ag含量对Al-Cu-Mg合金组织和性能的影响[J]. 航空材料学报, 2013, 33 (1): 7- 13.
doi: 10.3969/j.issn.1005-5053.2013.1.002
15 SONG Y F , PAN Q L , CAO S F , et al. Effects of Ag content on microstructures and properties of Al-Cu-Mg alloy[J]. Journal of Aeronautical Materials, 2013, 33 (1): 7- 13.
doi: 10.3969/j.issn.1005-5053.2013.1.002
16 SHOLLOCK B A , GROVENOR C R M , KNOWLCS K M . Compositional studies of Ω and θ' precipitates in an Al-Cu-Mg-Ag alloy[J]. Scripta Metallurgica et Materialia, 1990, 24 (7): 1239- 1244.
doi: 10.1016/0956-716X(90)90335-E
17 NAKAMURA J , MATSUDA K , KAWABATA T , et al. Effect of silver addition on the β'-phase in Al-Mg-Si-Ag alloy[J]. Materials Transactions, 2010, 51 (2): 310- 316.
doi: 10.2320/matertrans.MC200911
18 GABER A , MATSUDA K , ALI A M , et al. DSC and HRTEM investigation of the precipitates in Al-1.0%Mg2Si-0.5%Ag alloy[J]. Materials Science and Technology, 2004, 20 (1): 21627- 1631.
19 MATSUDA K , NAKAMURA J , NAKAMURA Y , et al. Crystal structure of the β'-phase in Al-Mg-Si-Ag alloy[J]. Materials Science Forum, 2007, 539/543, 837- 841.
20 IKENO S , MATSUI H , MATSUDA K , et al. DSC Measurement and HRTEM observation of precipitates in an Al-1.6 mass%Mg2Si alloy[J]. Journal of the Japan Institute of Metals, 2001, 65 (5): 404- 408.
doi: 10.2320/jinstmet1952.65.5_404
21 MARIOARA C D , ANDERSEN S J , ZANDBERGEN H W , et al. The influence of alloy composition on precipitates of the Al-Mg-Si system[J]. Metallurgical and Materials Transactions A, 2005, 36 (13): 691- 702.
doi: 10.1007/s11661-005-1001-7
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn