Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 101-109    DOI: 10.11868/j.issn.1001-4381.2019.000581
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮/氧共掺杂多孔碳纳米带的可控制备及储能特性
阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣
黑龙江省科学院 高技术研究院, 哈尔滨 150020
Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons
KAN Kan, WANG Jue, FU Dong, SONG Mei-hui, ZHANG Wei-jun, ZHANG Xiao-chen
Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China
全文: PDF(4828 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用模板聚合同步活化法可控制备了氮/氧共掺杂的多孔碳纳米带(PCNR)材料。通过SEM,TEM,FTIR,Raman,XRD,BET和XPS对PCNR的形貌和结构进行了表征,结果表明:PCNR呈三维连通的带状结构,碳纳米带表面呈多孔状;800℃活化制备的PCNR800样品比表面积为2342 m2/g、氮含量为10.75%,氧含量为13.90%。PCNR800为电极活性物质组装的超级电容器,其具有优异的储能特性。在电流密度为1.0 A/g时,比电容为58.8 F/g;在功率密度为1.5 kW/kg时,能量密度为73.3 Wh/kg;5000次恒流充放电循环后,比电容为初始比电容的96.5%,库仑效率保持99%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阚侃
王珏
付东
宋美慧
张伟君
张晓臣
关键词 杂原子掺杂多孔碳碳纳米带储能特性超级电容器    
Abstract:The N/O co-doped porous carbon nanoribbons (PCNR) have been prepared via a template polymerization synchronous chemical activation route. The PCNR samples were characterized by SEM, TEM, FTIR, Raman, XRD, BET and XPS. The results show that the PCNR presents a 3D connected ribbon structure. The surface of carbon nanoribbons is porous. The PCNR800 activated at 800 ℃ presents a large specific surface area of 2342 m2/g, high-level nitrogen atom doping of 10.75% and oxygen atom doping of 13.90%. As supercapacitor electrode materials, the typical PCNR800 sample exhibits excellent energy storage characteristics. The PCNR800 supercapacitor shows a high specific capacitance of 58.8 F/g (1.0 A/g). A high energy density of 73.3 Wh/kg at a power density of 1.5 kW/kg can be achieved. The specific capacitance of the supercapacitor was 96.5% of the initial specific capacitance and the columbic efficiency still remains above 99% after 5000 cycles.
Key wordsheteroatom doped    porous carbon    carbon nanoribbon    energy storage property    super-capacitor
收稿日期: 2019-06-21      出版日期: 2020-08-15
中图分类号:  O646  
  TQ152  
通讯作者: 张晓臣(1968-),男,研究员级高级工程师,主要从事石墨深加工技术、3D打印金属粉末制备技术、功能复合材料等技术研究及开发工作,联系地址:黑龙江省哈尔滨市道外区南马路135号(150020),E-mail:13946165731@163.com     E-mail: 13946165731@163.com
引用本文:   
阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
KAN Kan, WANG Jue, FU Dong, SONG Mei-hui, ZHANG Wei-jun, ZHANG Xiao-chen. Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons. Journal of Materials Engineering, 2020, 48(8): 101-109.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000581      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/101
[1] NOORI A, EL-KADY M F, RAHMANIFAR M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48(5):1272-1341.
[2] SUMBOJA A, LIU J W, ZHENG W G, et al. Electrochemical energy storage devices for wearable technology:a rationale for materials selection and cell design[J]. Chemical Society Reviews, 2018, 47(15):5919-5945.
[3] ARIE B, ORTAL H, RAN A, et al. Carbon-based composite materials for supercapacitor electrodes:a review[J]. Journal of Materials Chemistry A, 2017, 5(25):12653-12672.
[4] BI Z H, KONG Q Q, CAO Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes:a review[J]. Journal of Materials Chemistry A, 2019, 7(27):16028-16045.
[5] LIU W J, JIANG H, YU H Q. Emerging applications of biochar-based materials for energy storage and conversion[J]. Energy & Environmental Science, 2019, 12(6):1751-1779.
[6] HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews, 2019, 48(8):2315-2337.
[7] ZHOU Y S, ZHU Y C, XU B S, et al. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors[J]. Chemical Communications, 2019, 55(28):4083-4086.
[8] YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor:a review[J]. Carbon, 2019, 141:467-480.
[9] DHANABALAN S C, DHANABALAN B, CHEN X, et al. Hybrid carbon nanostructured fibers:stepping stone for intelligent textile-based electronics[J]. Nanoscale, 2019,11(7):3046-3101.
[10] CAI X, ZHANG C Q, ZHANG S S, et al. Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6):2444-2459.
[11] KARTHICK R, CHEN F M. Free-standing graphene paper for energy application:progress and future scenarios[J]. Carbon, 2019, 150:292-310.
[12] NOMURA K, NISHIHARA H, KOBAYASHI N, et al. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls[J]. Energy & Environmental Science, 2019, 12(5):1542-1549.
[13] LI F, XIE L J, SUN G H, et al. Resorcinol-formaldehyde based carbon aerogel:preparation, structure and applications in energy storage devices[J]. Microporous and Mesoporous Materials, 2019, 279:293-315.
[14] HE Y F, ZHUANG X D, LEI C J, et al. Porous carbon nanosheets:synthetic strategies and electrochemical energy related applications[J]. Nano Today, 2019, 24:103-119.
[15] DEND Y L, JI Y J, WU H M, et al. Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials[J]. Chemical Communications, 2019, 55(10):1486-1489.
[16] LEI S, LU Y, ZHANG X F, et al. A molecular engineering approach to pore-adjustable nanoporous carbons with narrow distribution for high-performance supercapacitors[J]. Chemical Communications, 2019, 55(16):2305-2308.
[17] BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al. Recent advances in functionalized micro and mesoporous carbon materials:synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8):2680-2721.
[18] BU Y F, SUN T, CAI Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29(24):1700470.
[19] DENG Y F, XIE Y, ZOU K X, et al. Review on recent advances in nitrogen-doped carbons:preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(4):1144-1173.
[20] HUANG Z H, LIU T Y, SONG Y, et al. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon[J]. Nanoscale, 2017, 9(35):13119-13127.
[21] WANG Z G, HU X, ZOU G J, et al. Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry[J]. Sustainable Energy Fuels, 2019, 3(3):611-655.
[22] QIE L, CHEN W M, XU H H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J] Energy & Environmental Science, 2013, 6(8):2497-2504.
[23] WANG Z H, QIE, YUAN L X, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013, 55:328-334.
[24] MENG F C, LI Q W, ZHENG L X. Flexible fiber-shaped supercapacitors:Design, fabrication, and multi-functionalities[J]. Energy Storage Materials, 2017, 8:85-109.
[25] 李诗杰,张继刚,李金晓,等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7):157-164. LI S J, ZHANG J G, LI J X, et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(7):157-164.
[26] 孙立,徐立洋,李宏扬,等. 氮掺杂多孔石墨碳的制备及储能特性[J]. 精细化工, 2018, 35(10):1659-1666. SUN L, XU L Y, LI H Y, et al. Synthesis and energy storage properties of nitrogen-doped porous graphite carbon[J]. Fine Chemicals, 2018, 35(10):1659-1666.
[27] SONG Z Y, LI L C, ZHU D Z, et al. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density[J]. Journal of Materials Chemistry A, 2019, 7(2):816-826.
[28] KAN K, WANG L, YU P, et al. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors[J]. Nanoscale, 2016, 8(19):10166-10176.
[29] QIE L, CHEN W M, WANG Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15):924.
[30] 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44(6):1-8. ZHENG H D. Fabrication and properties of 3D graphene oxide nanoribbons-carbon nanotubes/TPU composite films[J]. Journal of Materials Engineering, 2016, 44(6):1-8.
[31] SONG Z Y, ZHU D Z, LI L C, et al. Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor[J]. Journal of Materials Chemistry A, 2019, 7(3):1177-1186.
[32] 陈玮,孙晓刚,蔡满园,等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10):113-119. CHEN W, SUN X G, CAI M Y, et al. carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(10):113-119.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[3] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[6] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[7] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[8] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[9] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[10] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[11] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[12] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[13] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[14] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[15] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn