Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (8): 101-109    DOI: 10.11868/j.issn.1001-4381.2019.000581
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮/氧共掺杂多孔碳纳米带的可控制备及储能特性
阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣()
黑龙江省科学院 高技术研究院, 哈尔滨 150020
Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons
Kan KAN, Jue WANG, Dong FU, Mei-hui SONG, Wei-jun ZHANG, Xiao-chen ZHANG()
Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China
全文: PDF(4828 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用模板聚合同步活化法可控制备了氮/氧共掺杂的多孔碳纳米带(PCNR)材料。通过SEM,TEM,FTIR,Raman,XRD,BET和XPS对PCNR的形貌和结构进行了表征,结果表明:PCNR呈三维连通的带状结构,碳纳米带表面呈多孔状;800℃活化制备的PCNR800样品比表面积为2342 m2/g、氮含量为10.75%,氧含量为13.90%。PCNR800为电极活性物质组装的超级电容器,其具有优异的储能特性。在电流密度为1.0 A/g时,比电容为58.8 F/g;在功率密度为1.5 kW/kg时,能量密度为73.3 Wh/kg;5000次恒流充放电循环后,比电容为初始比电容的96.5%,库仑效率保持99%以上。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阚侃
王珏
付东
宋美慧
张伟君
张晓臣
关键词 杂原子掺杂多孔碳碳纳米带储能特性超级电容器    
Abstract

The N/O co-doped porous carbon nanoribbons (PCNR) have been prepared via a template polymerization synchronous chemical activation route. The PCNR samples were characterized by SEM, TEM, FTIR, Raman, XRD, BET and XPS. The results show that the PCNR presents a 3D connected ribbon structure. The surface of carbon nanoribbons is porous. The PCNR800 activated at 800 ℃ presents a large specific surface area of 2342 m2/g, high-level nitrogen atom doping of 10.75% and oxygen atom doping of 13.90%. As supercapacitor electrode materials, the typical PCNR800 sample exhibits excellent energy storage characteristics. The PCNR800 supercapacitor shows a high specific capacitance of 58.8 F/g (1.0 A/g). A high energy density of 73.3 Wh/kg at a power density of 1.5 kW/kg can be achieved. The specific capacitance of the supercapacitor was 96.5% of the initial specific capacitance and the columbic efficiency still remains above 99% after 5000 cycles.

Key wordsheteroatom doped    porous carbon    carbon nanoribbon    energy storage property    super-capacitor
收稿日期: 2019-06-21      出版日期: 2020-08-15
中图分类号:  O646  
  TQ152  
基金资助:黑龙江省自然科学基金项目(LH2019B030);中央引导地方科技发展专项(ZY18C06)
通讯作者: 张晓臣     E-mail: 13946165731@163.com
作者简介: 张晓臣(1968-), 男, 研究员级高级工程师, 主要从事石墨深加工技术、3D打印金属粉末制备技术、功能复合材料等技术研究及开发工作, 联系地址:黑龙江省哈尔滨市道外区南马路135号(150020), E-mail:13946165731@163.com
引用本文:   
阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
Kan KAN, Jue WANG, Dong FU, Mei-hui SONG, Wei-jun ZHANG, Xiao-chen ZHANG. Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons. Journal of Materials Engineering, 2020, 48(8): 101-109.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000581      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/101
Fig.1  PPy前驱体(a)和PCNR(b), (c)样品的SEM图
Fig.2  PCNR700,PCNR800,PCNR900和CNR800的XRD谱图(a)和Raman谱图(b)
Fig.3  PCNR700, PCNR800, PCNR900和CNR800的N2吸附-脱附曲线
Sample SBET/
(m2·g-1)
Pore volume/
(cm3·g-1)
Average pore size/nm
PCNR900 2006 1.0547 2.103
PCNR800 2342 1.1128 1.899
PCNR700 1807 1.1613 2.570
CNR800 1256 0.7061 2.248
Table 1  PCNR700,PCNR800,PCNR900和CNR800的孔隙结构参数
Fig.4  PCNR800样品的TEM图片
(a)~(c)不同放大倍数下的TEM图片;(d)选区HRTEM图片
Fig.5  PCNR700,PCNR800,PCNR900和CNR800的FTIR谱图
Sample Atom fraction/%
C O N
PCNR700 73.45 14.83 11.72
PCNR800 75.35 13.90 10.75
PCNR900 80.70 12.27 7.03
Table 2  PCNR700, PCNR800和PCNR900的元素含量
Fig.6  PCNR800的XPS谱图(a)全谱谱图; (b)C1s谱图; (c)O1s谱图; (d)N1s谱图
Fig.7  CNR800和PCNR800超级电容器的电化学阻抗Nyquist图
Fig.8  不同扫描速率时CNR800(a)和PCNR800(b)超级电容器的CV曲线
Fig.9  不同电流密度下CNR800(a)和PCNR800(b)超级电容器的GCD曲线
Fig.10  CNR800和PCNR800超级电容器在电流密度为1.0~20.0 A/g的比电容变化曲线(a)和能量密度随功率密度的变化图(b)
Fig.11  PCNR800超级电容器的循环稳定性和库仑效率随循环次数的变化
1 NOORI A , EL-KADY M F , RAHMANIFAR M S , et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48 (5): 1272- 1341.
doi: 10.1039/C8CS00581H
2 SUMBOJA A , LIU J W , ZHENG W G , et al. Electrochemical energy storage devices for wearable technology:a rationale for materials selection and cell design[J]. Chemical Society Reviews, 2018, 47 (15): 5919- 5945.
doi: 10.1039/C8CS00237A
3 ARIE B , ORTAL H , RAN A , et al. Carbon-based composite materials for supercapacitor electrodes:a review[J]. Journal of Materials Chemistry A, 2017, 5 (25): 12653- 12672.
doi: 10.1039/C7TA00863E
4 BI Z H , KONG Q Q , CAO Y F , et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes:a review[J]. Journal of Materials Chemistry A, 2019, 7 (27): 16028- 16045.
doi: 10.1039/C9TA04436A
5 LIU W J , JIANG H , YU H Q . Emerging applications of biochar-based materials for energy storage and conversion[J]. Energy & Environmental Science, 2019, 12 (6): 1751- 1779.
6 HU C , LI M Y , QIU J S , et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews, 2019, 48 (8): 2315- 2337.
doi: 10.1039/C8CS00750K
7 ZHOU Y S , ZHU Y C , XU B S , et al. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors[J]. Chemical Communications, 2019, 55 (28): 4083- 4086.
doi: 10.1039/C9CC01277J
8 YANG Z F , TIAN J R , YIN Z F , et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor:a review[J]. Carbon, 2019, 141, 467- 480.
doi: 10.1016/j.carbon.2018.10.010
9 DHANABALAN S C , DHANABALAN B , CHEN X , et al. Hybrid carbon nanostructured fibers:stepping stone for intelligent textile-based electronics[J]. Nanoscale, 2019, 11 (7): 3046- 3101.
doi: 10.1039/C8NR07554A
10 CAI X , ZHANG C Q , ZHANG S S , et al. Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices[J]. Journal of Materials Chemistry A, 2017, 5 (6): 2444- 2459.
doi: 10.1039/C6TA07868K
11 KARTHICK R , CHEN F M . Free-standing graphene paper for energy application:progress and future scenarios[J]. Carbon, 2019, 150, 292- 310.
doi: 10.1016/j.carbon.2019.05.017
12 NOMURA K , NISHIHARA H , KOBAYASHI N , et al. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls[J]. Energy & Environmental Science, 2019, 12 (5): 1542- 1549.
13 LI F , XIE L J , SUN G H , et al. Resorcinol-formaldehyde based carbon aerogel:preparation, structure and applications in energy storage devices[J]. Microporous and Mesoporous Materials, 2019, 279, 293- 315.
doi: 10.1016/j.micromeso.2018.12.007
14 HE Y F , ZHUANG X D , LEI C J , et al. Porous carbon nanosheets:synthetic strategies and electrochemical energy related applications[J]. Nano Today, 2019, 24, 103- 119.
doi: 10.1016/j.nantod.2018.12.004
15 DEND Y L , JI Y J , WU H M , et al. Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials[J]. Chemical Communications, 2019, 55 (10): 1486- 1489.
doi: 10.1039/C8CC08391F
16 LEI S , LU Y , ZHANG X F , et al. A molecular engineering approach to pore-adjustable nanoporous carbons with narrow distribution for high-performance supercapacitors[J]. Chemical Communications, 2019, 55 (16): 2305- 2308.
doi: 10.1039/C8CC10186H
17 BENZIGAR M R , TALAPANENI S N , JOSEPH S , et al. Recent advances in functionalized micro and mesoporous carbon materials:synthesis and applications[J]. Chemical Society Reviews, 2018, 47 (8): 2680- 2721.
doi: 10.1039/C7CS00787F
18 BU Y F , SUN T , CAI Y J , et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials, 2017, 29 (24): 1700470.
doi: 10.1002/adma.201700470
19 DENG Y F , XIE Y , ZOU K X , et al. Review on recent advances in nitrogen-doped carbons:preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4 (4): 1144- 1173.
20 HUANG Z H , LIU T Y , SONG Y , et al. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon[J]. Nanoscale, 2017, 9 (35): 13119- 13127.
doi: 10.1039/C7NR04234E
21 WANG Z G , HU X , ZOU G J , et al. Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry[J]. Sustainable Energy Fuels, 2019, 3 (3): 611- 655.
22 QIE L , CHEN W M , XU H H , et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6 (8): 2497- 2504.
23 WANG Z H , Q IE , YUAN L X , et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013, 55, 328- 334.
doi: 10.1016/j.carbon.2012.12.072
24 MENG F C , LI Q W , ZHENG L X . Flexible fiber-shaped supercapacitors:Design, fabrication, and multi-functionalities[J]. Energy Storage Materials, 2017, 8, 85- 109.
doi: 10.1016/j.ensm.2017.05.002
25 李诗杰, 张继刚, 李金晓, 等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46 (7): 157- 164.
25 LI S J , ZHANG J G , LI J X , et al. Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (7): 157- 164.
26 孙立, 徐立洋, 李宏扬, 等. 氮掺杂多孔石墨碳的制备及储能特性[J]. 精细化工, 2018, 35 (10): 1659- 1666.
26 SUN L , XU L Y , LI H Y , et al. Synthesis and energy storage properties of nitrogen-doped porous graphite carbon[J]. Fine Chemicals, 2018, 35 (10): 1659- 1666.
27 SONG Z Y , LI L C , ZHU D Z , et al. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density[J]. Journal of Materials Chemistry A, 2019, 7 (2): 816- 826.
28 KAN K , WANG L , YU P , et al. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors[J]. Nanoscale, 2016, 8 (19): 10166- 10176.
doi: 10.1039/C6NR01094F
29 QIE L , CHEN W M , WANG Z H , et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24 (15): 924.
30 郑辉东. 3D氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备与性能[J]. 材料工程, 2016, 44 (6): 1- 8.
doi: 10.3969/j.issn.1673-1433.2016.06.001
30 ZHENG H D . Fabrication and properties of 3D graphene oxide nanoribbons-carbon nanotubes/TPU composite films[J]. Journal of Materials Engineering, 2016, 44 (6): 1- 8.
doi: 10.3969/j.issn.1673-1433.2016.06.001
31 SONG Z Y , ZHU D Z , LI L C , et al. Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor[J]. Journal of Materials Chemistry A, 2019, 7 (3): 1177- 1186.
32 陈玮, 孙晓刚, 蔡满园, 等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46 (10): 113- 119.
doi: 10.11868/j.issn.1001-4381.2017.000482
32 CHEN W , SUN X G , CAI M Y , et al. carbon nanotubes/cellulose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46 (10): 113- 119.
doi: 10.11868/j.issn.1001-4381.2017.000482
[1] 李鑫, 王秋芬, 缪娟, 田会芳, 张成立, 张延磊, 张志林. 莴笋叶制备多孔碳材料的优化设计及储锂性能[J]. 材料工程, 2022, 50(4): 53-61.
[2] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[3] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[4] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[5] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[6] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[7] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[8] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[9] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[10] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[11] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[12] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[13] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[14] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[15] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn