Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 25-35    DOI: 10.11868/j.issn.1001-4381.2019.000590
  纳米材料专栏 本期目录 | 过刊浏览 | 高级检索 |
碳纳米材料构建高性能锂离子和锂硫电池研究进展
吴怡芳1, 崇少坤2, 柳永宁2, 郭生武2, 白利锋1, 张翠萍1, 李成山1
1. 西北有色金属研究院, 西安 710016;
2. 西安交通大学 金属材料强度重点实验室, 西安 710049
Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance
WU Yi-fang1, CHONG Shao-kun2, LIU Yong-ning2, GUO Sheng-wu2, BAI Li-feng1, ZHANG Cui-ping1, LI Cheng-shan1
1. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China;
2. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(5426 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 碳作为单一元素可形成像零维碳纳米球、一维碳纳米管、二维石墨烯等多种碳纳米结构,它们在锂离子和锂硫电池中的表现也有所不同。需要阐明的是,碳纳米管和石墨烯由于具有以下缺点不适合直接作为锂离子或锂硫电池电极材料:(1)第一次不可逆容量大,首次充放电效率低;(2)在充放电曲线中电压滞后现象严重;(3)缺少稳定的电压平台;(4)容量衰减快。科学家们一直在为获得具有更高能量密度和更广阔应用前景的锂离子电池和锂硫电池而努力,由于可充电电池的性能主要取决于阴极和阳极的性能,因此,设计先进的电极材料以及制备具有特定成分和结构的电极成为近年来的研究热点。本文综述了碳纳米材料在构建高性能锂离子、锂硫电池电极材料和特定电极方面的作用。首先,从促进电子和离子传输、固定多硫化物位置以及缓冲体积膨胀三个方面讨论了碳纳米材料在修饰电活性材料的作用;其次,从作为导电添加剂、电流集流体和导电中间层三个方面讨论了碳纳米材料在最优化非活性组分的作用;然后,从作为非导电基体上的导电相、柔性电流集流体和自支撑复合电极三个方面讨论了碳纳米材料在柔性电池设计的作用。最后,本文对碳纳米材料的未来发展趋势作了概述,兼具多种功能的碳纳米材料被认为是今后的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴怡芳
崇少坤
柳永宁
郭生武
白利锋
张翠萍
李成山
关键词 碳纳米材料锂离子锂硫电池研究进展    
Abstract:Carbon solely can form a lot of nanostructures, such as zero-dimensional nanosphere, one-dimensional nanotube and two-dimensional graphene. They perform differently in Li-ion and Li-S batteries. It is worth noting that CNTs and graphene are not appropriate to be used as electroactive materials for Li-ion or Li-S batteries for four reasons. First, when CNTs and graphene are used as an anode, they often exhibit high specific capacities during the first lithiation step, but a large fraction of lithium ions is irreversibly consumed instead of reversibly stored, leading to a low Coulombic efficiency of the cell. Second, a graphene-based anode has a large voltage hysteresis in the charge/discharge curves. Third, it has been reported a CNT-based anode lacks a steady voltage plateau with large change in voltage during discharge. Fourth, despite their high initial capacities, graphene and CNT-based anodes often suffer from fast capacity decay after a few tens of cycles. Continuous efforts have been made to build better lithium batteries with a higher energy density and wider applicability, including both current state-of-the-art Li-ion batteries and near-term Li-S batteries. Because the behavior of a rechargeable battery is mainly based on the performance of its anode and cathode, designing advanced electrode materials as well as electrode with tailored compositions and structures has been the hot topic in recent years. The role of carbon nano-materials to construct electrode materials and tailored electrodes in Li-ion and Li-S batteries in high performance was reviewed in the paper from three aspects. Firstly, the role of carbon nano-materials in modifying the electroactive materials was discussed from three aspects:electron- and ion-transport facilitators, immobilization sites and volume expansion buffering. Secondly, the role of carbon nano-materials in optimizing the inactive components was considered as follows:conducting additives, current collectors and conductive interlayers. Thirdly, the role of carbon nano-materials in designing the bendable and stretchable devices are discussed from three aspects:conductive phases in nonconductive substrates, flexible current collectors and freestanding composite electrode. Finally, perspectives on future development of Li-ion and Li-S batteries were presented. It is considered that multi-functional carbon nano-materials will be main research focus in the future.
Key wordscarbon nano-material    Li-ion    Li-S battery    research progress
收稿日期: 2019-05-30      出版日期: 2020-04-23
中图分类号:  O646.21  
通讯作者: 吴怡芳(1977-),女,教授级高工,博士,研究方向为新能源材料,联系地址:西安市未央区未央路96号西北有色金属研究院(710016),E-mail:wyf7777v@126.com     E-mail: wyf7777v@126.com
引用本文:   
吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
WU Yi-fang, CHONG Shao-kun, LIU Yong-ning, GUO Sheng-wu, BAI Li-feng, ZHANG Cui-ping, LI Cheng-shan. Research progress on carbon nano-materials to construct Li-ion and Li-S batteries of high performance. Journal of Materials Engineering, 2020, 48(4): 25-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000590      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/25
[1] 苏芳,李相哲,徐祖宏. 新一代动力锂离子电池研究进展[J]. 电源技术, 2019,43(5):887-889. SU F, LI X Z, XU Z H. Research progress of a new generation of power Li-ion batteries[J]. Chinese Journal of Power Sources, 2019,43(5):887-889.
[2] 熊凡,张卫新,杨则恒,等. 高比能量锂离子电池正极材料的研究进展[J]. 储能科学与技术,2018, 7(4):607-617. XIONG F,ZHANG W X,YANG Z H,et al.Research progress on cathode materials for high energy density lithium ion batteries[J]. Energy Storage Science and Technology,2018, 7(4):607-617.
[3] 王力臻,邹振耀,易祖良,等.具有核壳结构锂离子电池正极材料的研究进展[J]. 电源技术,2018, 42(5):718-721. WANG L Z,ZOU Z Y,YI Z L,et al.Research progress of core-shell cathode material for Li-ion battery[J]. Chinese Journal of Power Sources,2018,42(5):718-721.
[4] 刘波,张鹏,赵金保. 锂离子动力电池及其关键材料的发展趋势[J]. 中国科学:化学, 2018, 48(1):18-30. LIU B, ZHANG P, ZHAO J B. Development trends of lithium ion batteries and their key materials for electric vehicles[J]. Scientia Sinica Chimica, 2018, 48(1):18-30.
[5] 徐文洪,周惠来,胡弘,等. 锂离子动力电池产业技术发展态势分析及对策[J].地域研究与开发,2016, 35(6):31-36. XU W H,ZHOU H L,HU H,et al.Development trend and countermeasures of lithium-ion battery technology industry[J]. Areal Research and Development,2016, 35(6):31-36.
[6] 朱瑞,邓卫斌,李军,等. 锂离子电池硅-碳负极材料的研究进展[J]. 化工新型材料, 2018, 46(7):34-39. ZHU R,DENG W B,LI J,et al.Research progress of silicon-carbon cathode material for lithium ionic battery[J]. New Chemical Materials, 2018, 46(7):34-39.
[7] ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery:state of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89:292-308.
[8] LI M, LU J, CHEN Z W. 30 years of lithium-ion batteries[J]. Adv Mater, 2018, 30(33):1800561.
[9] 陈志金,张一鸣,田爽,等. 锂离子电池导电剂的研究进展[J]. 电源技术,2019,43(2):333-337. CHEN Z J,ZHANG Y M,TIAN S,et al.Research progress of conducting agent for lithium ion batteries[J]. Chinese Journal of Power Sources,2019, 43(2):333-337.
[10] 刘中奎,左阳,马留可. 导电剂对锂离子电池性能的影响[J]. 电源技术, 2018,42(8):1110-1112. LIU Z K,ZUO Y,MA L K.Effect of conductive agent on performance of lithium ion battery[J]. Chinese Journal of Power Sources,2018,42(8):1110-1112.
[11] 李娟,韩广欣,刘兴福,等. 纳米碳导电剂在锂离子电池中的应用[J]. 电池工业,2018, 22(6):323-328. LI J,HAN G X,LIU X F,et al.Application of nano-carbon conductive additives in lithium-ion battery[J]. Chinese Battery Industry,2018, 22(6):323-328.
[12] YUAN W, ZHANG Y, CHENG L, et al. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries[J]. J Mater Chem:A, 2016, 4:8932-8951.
[13] WEN L, LI F, CHENG H M. Carbon nanotubes and graphene for flexible electrochemical energy storage:from materials to devices[J]. Adv Mater, 2016, 28, 4306-4337.
[14] 苏方远,唐睿,贺艳兵,等. 用于锂离子电池的石墨烯导电剂:缘起、现状及展望[J]. 科学通报, 2017, 62(32):3743-3756. SU F Y,TANG R,HE Y B,et al.Graphene conductive additives for lithium ion batteries:origin, progress and prospect[J]. Chinese Science Bulletin, 2017, 62(32):3743-3756.
[15] ZHAO S Y, PEI S F, QIAN X T, et al. Toward more reliable lithium-sulfur batteries:an all-graphene cathode structure[J]. ACS Nano, 2016, 10(9):8676-8682.
[16] LI W, FANG R Y, XIA Y, et al. Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries[J]. Batteries & Supercaps, 2018, 2(1):9-36.
[17] LI S, ZHAO Y, LIU Z, et al. Flexible graphene-wrapped carbon nanotube/graphene@MnO2 3D multilevel porous film for high-performance lithium-ion batteries[J]. Small, 2018, 14(32):1801007.
[18] MAHMOOD N, TANG T, HOU Y. Nanostructured anode materials for lithium ion batteries:progress, challenge and perspective[J]. Advanced Energy Materials, 2016, 6:1600374.
[19] FANG R P, LI G X, ZHAO S Y, et al. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries[J].Nano Energy, 2017,42:205-214.
[20] CHUNG S H, CHANG C H, MANTHIRAM A. A core-shell electrode for dynamically and statically stable Li-S battery chemistry[J]. Energy Environ Sci, 2016, 9:3188-3200.
[21] FANG R P, ZHAO S Y, HOU P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28(17):3374-3382.
[22] LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy Environ Sci, 2016, 9:1998-2004.
[23] ZHOU F, LI Z, LUO X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018,18(2):1035-1043.
[24] CHANG C H, CHUNG S H, MANTHIRAM A. Highly flexible, freestanding tandem sulfur cathodes for foldable Li-S batteries with a high areal capacity[J]. Mater Horizon, 2017, 4(2):249-258.
[25] 赵廷凯,邓娇娇,折胜飞,等. 碳纳米管和石墨烯在锂离子电池负极材料中的应用[J].炭素技术,2015, 34(3):1-5. ZHAO T K,DENG J J,ZHE S F,et al.Applications of carbon nanotubes and graphene as anode materials for lithium ion battery[J]. Carbon Techniques,2015, 34(3):1-5.
[26] FANG R P, CHEN K, YIN L C, et al. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries[J]. Adv Mater, 2019, 31:1800863.
[27] WU Z S, ZHOU G, YIN L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1:107-131.
[28] 李进,单香丽,王雪丽,等. 介孔碳纳米微球在锂离子电池中的应用[J]. 电池, 2018, 48(1):49-52. LI J,SHAN X L,WANG X L,et al.Application of nano-mesoporous carbon spheres in Li-ion battery[J]. Battery Bimonthly, 2018, 48(1):49-52.
[29] WANG B, LIU T F, LIU A M, et al. A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries:combined experimental and theoretical study[J]. Advanced Energy Materials, 2016,6(16):1600426.
[30] WANG B, ABDULL A W, WANG D L, et al. Three-dimensional porous LiFePO4 cathode material modified with nitrogen-doped graphene aerogel for high-power lithium ion batteries[J]. Energy & Environmental Science, 2015, 8:869-875.
[31] FANG X, SHEN C F, GE M Y, et al. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbonnanotube film[J]. Nano Energy, 2015, 12:43-51.
[32] ZHANG L P, FU J, ZHANG C H. Mechanical composite of LiNi0.8Co0.15Al0.05O2/carbon nanotubes with enhanced electrochemical performance for lithium-ion batteries[J]. Nanoscale Research Letters, 2017, 12:1-7.
[33] ZHAO X, SUI J, LI F, et al. Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles:novel hybrid nanostructures promoted excellent performances for lithium ion batteries[J]. Nanoscale, 2016, 8:17902-17910.
[34] ZHU X, LIANG X, FAN X, et al. Fabrication of flower-like MoS2/TiO2 hybrid as an anode material for lithium ion batteries[J]. RSC Adv, 2017, 7:38119-38124.
[35] ZHENG C, CHEN C, CHEN L, et al. A CMK-5-encapsulated MoSe2 composite for rechargeable lithium-ion batteries with improved electrochemical performance[J]. J Mater Chem:A, 2017, 5:19632-19638.
[36] JIN R, LIU X, YANG L, et al. Sandwich-like Cu2-xSe@C@MoSe2 nanosheets as an improved performance anode for lithium-ion battery[J]. Electrochim Acta, 2018, 259:841-849.
[37] CAI Y, YANG H, ZHOU J, et al. Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-son batteries[J]. Chem Eng J, 2017, 327:522-529.
[38] TABASSUM H, ZOU R, MAHMOOD A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-Doped graphitic nanotubes as high-performance lithium-ion battery anodes[J]. Advanced Materials,2018,30:1705441.
[39] ZHOU G, WANG D W, YIN L C, et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J]. ACS Nano, 2012, 6:3214-3223.
[40] SHAN X Y, ZHOU G, YIN L C, et al. Visualizing the roles of graphene for excellent lithium storage[J]. J Mater Chem A, 2014, 2(42):17808-17814.
[41] CHEN Y M, YU X Y, LI Z, et al. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries[J]. Science Advances, 2016, 2(7):e1600021.
[42] JI L, RAO M, ZHENG H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46):18522-18525.
[43] FANG R, ZHAO S, PEI S, et al. Toward more reliable lithium-sulfur batteries:an all-graphene cathode structure[J]. Carbon, 2016, 10:8676-8682.
[44] ZHOU G M, PAEK E, HWANG G S, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J]. Nature Communications, 2015, 6:7760.
[45] QIU Y, LI W, ZHAO W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Lett, 2014, 14:4821-4827.
[46] YUAN H, ZHANG W, WANG J G, et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries[J].Energy Storage Mater, 2018, 10:1-9.
[47] SEH W Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat Commun, 2013, 4:1331.
[48] LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nat Nanotechnol, 2014, 9:187-192.
[49] HUANG G, ZHANG F F, DU X C, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9:1592-1599.
[50] YAN M, WANG F, HAN C, et al. Nanowire templated semihollow bicontinuous graphene scrolls:designed construction, mechanism, and enhanced energy storage performance[J]. Journal of the American Chemical Society, 2013,135(48):18176-18182.
[51] YU W J, LIU C, HOU P X, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes[J]. ACS Nano, 2015, 9:5063-5071.
[52] LANDI J B, RAFFAELLE R P, HEBEN J M, et al. Single wall carbon nanotube-nafion composite actuators[J]. Nano Lett, 2002, 2:1329-1332.
[53] SU F Y, HE Y B, LI B, et al. Could graphene construct an effective conducting network in a high-power lithium ion battery?[J]. Nano Energy, 2012, 1:429-439.
[54] WANG K, LUO S, WU Y, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries[J]. Advanced Functional Materials, 2013, 23(7):846-853.
[55] SHI Y, WEN L, ZHOU G, et al. Graphene-based integrated electrodes for flexible lithium ion batteries[J]. 2D Materials, 2015, 2(2):024004.
[56] HSIEH Y Y, FANG Y B, DAUM J, et al. Nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries[J]. Carbon, 2019,145:677-689.
[57] YUE Y, LIANG H. 3D current collectors for lithium-ion batteries:a topical review[J]. Small Methods, 2018, 2(8):1800056.
[58] SU Y S, MANTHIRAM A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications, 2012, 48(70):8817-8819.
[59] ZHOU G M, PEI S F, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Adv Mater, 2014, 26:625-631.
[60] FANG R, ZHAO S, PEI S, et al. Toward more reliable lithium-sulfur batteries:an all-graphene cathode structure[J]. ACS Nano, 2016, 10(9):8676-8682.
[61] YOUSAF M, SHI H T H, WANG Y, et al. Novel pliable electrodes for flexible electrochemical energy storage devices:recent progress and challenges[J]. Adv Eng Mater, 2016, 6:1600490.
[62] QIAN G Y, LIAO X B, ZHU Y X, et al. Designing flexible lithium-ion batteries by structural engineering[J]. ACS Energy Letters, 2019, 4(3):690-701.
[63] BALOGUN M S, YANG H, LUO Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy Environ Sci, 2018, 11:1859-1869.
[64] SON J M, OH S, BAE S H, et al. A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(18):1900477.
[65] SONG W J, YOO S, SONG G, et al. Recent progress in stretchable batteries for wearable electronics[J]. Batteries & Supercaps, 2019, 2(3):181-199.
[66] HWANG C, SONG W J, HAN J G, et al. Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries[J]. Adv Mater, 2018, 30(7):1705445.
[67] YIN Z X, SONG S K, CHO S, et al. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach[J]. Nano Res,2017,9:3077-3091.
[68] PAN Z Y, REN J, GUAN G Z, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(11):1600271.
[69] CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small, 2018, 14(43):1702989.
[70] ZHAO Q S, LIU J L, LI X X, et al. Graphene oxide-induced synthesis of button-shaped amorphous Fe2O3/rGO/CNFs films as flexible anode for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2019,369:215-222.
[71] CHEN D, LOU Z, JIANG K, et al. Device configurations and future prospects of flexible/stretchable lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(51):2805596.
[72] DENG Z, JIANG H, HU Y. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Adv Mater, 2017, 29:1603020.
[73] WENG Z, SU Y, WANG D W, et al. Graphene-cellulose paper flexible supercapacitors[J]. Adv Energy Mater,2011,1:917-922.
[74] ALIAHMAD N, LIU Y, XIE J, et al. V2O5/graphene hybrid supported on paper current collectors for flexible ultrahigh-capacity electrodes for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(19):16490-16499.
[75] GWON H, KIM H S, LEE K U, et al. Flexible energy storage devices based on graphene paper[J]. Energy Environ Sci, 2011, 4:1277-1283.
[76] LI N, CHEN Z P, REN W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proc Natl Acad Sci USA, 2012, 109:17360-17365.
[77] ELIZABETH I, SINGH P B, GOPUKUMAR S. Electrochemical performance of Sb2S3/CNT free-standing flexible anode for Li-ion batteries[J]. Journal of Materials Science, 2019, 54(9):7110-7118.
[78] ZHAO X, WANG G, ZHOU Y, et al. Flexible free-standing ternary CoSnO3/graphene/carbon nanotubes composite papers as anodes for enhanced performance of lithium-ion batteries[J]. Energy, 2017, 118:172-180.
[79] BALOGUN M S, QIU W, LYU F. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode[J]. Nano Energy, 2016, 26:446-455.
[80] KANG C, CHA E, BASKARAN R, et al. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode[J]. Nanotechnology, 2016, 27(10):105402.
[81] YOUSAF M, WANG Y, CHEN Y J, et al. Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage[J]. ACS Appl Mater Interfaces, 2018, 10(17):14622-14631.
[82] DING Y H, REN H M, HUANG Y Y, et al. Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries[J]. Mater Res Bull, 2013, 48:3713-3716.
[83] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Adv Funct Mater, 2014, 24:6105-6112.
[84] CHEN Y, WANG Y, YOUSAF M, et al. A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries[J]. Mater Res Bull, 2017, 93:1-8.
[85] MA X, LI Z H, CHEN D K, et al. Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery[J]. Electroanalytical Chemistry,2019, 848:113275.
[1] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[2] 王楠, 齐新, 彭思侃, 陈翔, 王晨, 戴圣龙, 燕绍九. Mn2O3/Fe2O3/少层石墨烯/硫锂硫电池正极材料的制备及其电化学性能[J]. 材料工程, 2020, 48(8): 110-118.
[3] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[4] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[5] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[6] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[7] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[8] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[9] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[12] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[13] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[14] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[15] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn