Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 15-24    DOI: 10.11868/j.issn.1001-4381.2019.000593
  纳米材料专栏 本期目录 | 过刊浏览 | 高级检索 |
纳米颗粒的自组装及其在锂离子电池中的应用
刘乐浩1,2, 莫金珊1, 李美成1, 赵廷凯2, 李铁虎2, 王大为3
1. 华北电力大学 可再生能源学院, 北京 102206;
2. 西北工业大学 材料学院, 西安 710072;
3. 中山大学 化学学院, 广州 510275
Self-assembly of nanoparticles for lithium-ion battery applications
LIU Le-hao1,2, MO Jin-shan1, LI Mei-cheng1, ZHAO Ting-kai2, LI Tie-hu2, WANG Da-wei3
1. School of Renewable Energy, North China Electric Power University, Beijing 102206, China;
2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
3. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
全文: PDF(3910 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在简要介绍纳米颗粒的基本物理-化学性能及其制备现状的基础上,着重论述了纳米颗粒自组装的类型及原理,总结了纳米颗粒自组装在锂离子电池上的应用研究进展,并指出该应用中存在制备效率低、污染较大等问题,提出今后工作将集中在开发合适组装单元、揭示自组装基本原理、简化制备程序等方面,认为纳米材料合成过程中实现多层次/功能电池结构调控是未来发展的重要方向之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘乐浩
莫金珊
李美成
赵廷凯
李铁虎
王大为
关键词 纳米颗粒自组装多层次结构锂离子电池    
Abstract:The physical/chemical properties and synthesis methods of nanoparticles were briefly introduced, and then the type and principle of the self-assembly of nanoparticles were discussed in detail. The research progress in the application of the nanoparticle self-assembly in lithium-ion batteries was summarized, and the existing problems such as the low production efficiency and high pollution in this field were also pointed out. The future works will be focused on developing approp-riate building blocks, disclosing the self-organization mechanisms and simplifying the fabrication processes, and the simultaneous yet effective adjustion of the self-assembly processes in the materials synthesis stage for advanced battery components with hierarchical structures or functions is one of the most important approaches.
Key wordsnanoparticle    self-assembly    hierarchical structure    lithium-ion battery
收稿日期: 2019-06-23      出版日期: 2020-04-23
中图分类号:  TB34  
通讯作者: 李美成(1973-),男,教授,博士,主要从事新能源材料及其器件研究,联系地址:北京市昌平区北农路2号华北电力大学可再生能源学院(102206),E-mail:mcli@ncepu.edu.cn     E-mail: mcli@ncepu.edu.cn
引用本文:   
刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
LIU Le-hao, MO Jin-shan, LI Mei-cheng, ZHAO Ting-kai, LI Tie-hu, WANG Da-wei. Self-assembly of nanoparticles for lithium-ion battery applications. Journal of Materials Engineering, 2020, 48(4): 15-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000593      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/15
[1] GRZELCZAK M,LIZ-MARZ N L M,KLAJN R. Stimuli-responsive self-assembly of nanoparticles[J]. Chemical Society Reviews,2019,48(5):1342-1361.
[2] GRZYBOWSKI B A,FITZNER K,PACZESNY J,et al. From dynamic self-assembly to networked chemical systems[J]. Chemical Society Reviews,2017,46(18):5647-5678.
[3] WANG Q,WANG Z,LI Z,et al. Controlled growth and shape-directed self-assembly of gold nanoarrows[J]. Science Advances,2017,3(10):e1701183.
[4] 陈娟,江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报,2019,33(3):454-461. CHEN J, JIANG Q. The role of self-assembly technology in the preparation of inorganic nanomaterials with special morphology[J]. Materials Reports,2019,33(3):454-461.
[5] HUANG L,ZHENG J,HUANG L,et al. Controlled synthesis and flexible self-assembly of monodisperse Au@semiconductor core/shell hetero-nanocrystals into diverse superstructures[J]. Chemistry of Materials,2017,29(5):2355-2363.
[6] THORKELSSON K,BAI P,XU T. Self-assembly and applications of anisotropic nanomaterials:a review[J]. Nano Today,2015,10(1):48-66.
[7] LI M,LU J,CHEN Z,et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30(33):1800561.
[8] LIU L H,LI M C,CHU L H,et al. Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer self-assembly[J]. Applied Surface Science,2019,476:501-512.
[9] LIU C F,NEALE Z G,CAO G Z. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today,2016,19(2):109-123.
[10] BUZEA C,PACHECO I I,ROBBIE K. Nanomaterials and nanoparticles:sources and toxicity[J]. Biointerphases,2007,2(4):MR17-MR71.
[11] YIN Y,ALIVISATOS A P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature,2005,437(7059):664-670.
[12] LU W,LIEBER C M. Nanoelectronics from the bottom up[J]. Nature Materials,2007,6(11):841-850.
[13] PATETE J M,PENG X,KOENIGSMANN C,et al. Viable methodologies for the synthesis of high-quality nanostructures[J]. Green Chemistry,2011,13(3):482-519.
[14] SZYCHOWSKI B,PELTON M,DANIEL M C. Preparation and properties of plasmonic-excitonic nanoparticle assemblies[J]. Nanophotonics,2019,8(4):517-547.
[15] SUTTER E,ZHANG B,SUTTER S,et al. In situ electron microscopy of the self-assembly of single-stranded DNA-functionalized Au nanoparticles in aqueous solution[J]. Nanoscale,2019,11(1):34-44.
[16] GRZYBOWSKI B A,WILMER C E,KIM J,et al. Self-assembly:from crystals to cells[J]. Soft Matter,2009,5(6):1110-1128.
[17] GRZELCZAK M,VERMANT J,FURST E M,et al. Directed self-assembly of nanoparticles[J]. ACS Nano,2010,4(7):3591-3605.
[18] MAYE M M,NYKYPANCHUK D,CUISINIER M,et al. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nature Materials,2009,8(5):388-391.
[19] XU X,ROSI N L,WANG Y,et al. Asymmetric functionalization of gold nanoparticles with oligonucleotides[J]. Journal of the American Chemical Society,2006,128(29):9286-9287.
[20] CHENG W,CAMPOLONGO M J,CHA J J,et al. Free-standing nanoparticle superlattice sheets controlled by DNA[J]. Nature Materials,2009,8(6):519-525.
[21] KLAJN R,BISHOP K J M,GRZYBOWSKI B A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(25):10305.
[22] OLSON M A,COSKUN A,KLAJN R,et al. Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions[J]. Nano Letters,2009,9(9):3185-3190.
[23] CORREA-DUARTE M A,LIZ-MARZ N L M. Carbon nanotubes as templates for one-dimensional nanoparticle assemblies[J]. Journal of Materials Chemistry,2006,16(1):22-25.
[24] ZHAO Y,THORKELSSON K,MASTROIANNI A J,et al. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites[J]. Nature Materials,2009,8(12):979-985.
[25] NIE Z,FAVA D,KUMACHEVA E,et al. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers[J]. Nature Materials,2007,6(8):609-614.
[26] QUINTANA M,PRATO M. Supramolecular aggregation of functionalized carbon nanotubes[J]. Chemical Communications,2009(40):6005-6007.
[27] ZANG X,CHEN W,ZOU X,et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis[J]. Advanced Materials,2018,30(50):1805188.
[28] KLINKOVA A,CHOUEIRI R M,KUMACHEVA E. Self-assembled plasmonic nanostructures[J]. Chemical Society Reviews,2014,43(11):3976-3991.
[29] BISHOP K J M,WILMER C E,SOH S,et al. Nanoscale forces and their uses in self-assembly[J]. Small,2009,5(14):1600-1630.
[30] TALAPIN D V,LEE J S,KOVALENKO M V,et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications[J]. Chemical Reviews,2010,110(1):389-458.
[31] XIA Y,NGUYEN T D,YANG M,et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles[J]. Nature Nanotechnology,2011,6:580-587.
[32] SAU T K,MURPHY C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes[J]. Langmuir,2005,21(7):2923-2929.
[33] MURRAY C B,KAGAN C R,BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices[J]. Science,1995,270(5240):1335-1338.
[34] 王大为. 金、银纳米颗粒的静电自组装特性及其应用研究[D]. 西安:西北工业大学,2012. WANG D W. Fundamentals and application of the electrostatic self-assembly of Au and Ag nanoparticles[D]. Xi'an:Northwestern Polytechnical University, 2012.
[35] BHARDWAJ R,FANG X,SOMASUNDARAN P,et al. Self-assembly of colloidal particles from evaporating droplets:role of DLVO interactions and proposition of a phase diagram[J]. Langmuir,2010,26(11):7833-7842.
[36] GENIX A C,OBERDISSE J. Nanoparticle self-assembly:from interactions in suspension to polymer nanocomposites[J]. Soft Matter,2018,14(25):5161-5179.
[37] LUO D,YAN C,WANG T. Interparticle forces underlying nanoparticle self-assemblies[J]. Small,2015,11(45):5984-6008.
[38] ZHANG S,SHAO Y,YIN G,et al. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation[J]. Angewandte Chemie International Edition,2010,49(12):2211-2214.
[39] KALSIN A M,FIALKOWSKI M,PASZEWSKI M,et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice[J]. Science,2006,312(5772):420-424.
[40] JIANG Y,SHEN Y,WU P. Self-assembly of multilayer films containing gold nanoparticles via hydrogen bonding[J]. Journal of Colloid and Interface Science,2008,319(2):398-405.
[41] BHATTACHARJEE R R,MANDAL T K. Polymer-mediated chain-like self-assembly of functionalized gold nanoparticles[J]. Journal of Colloid and Interface Science,2007,307(1):288-295.
[42] GRZELCZAK M,CORREA-DUARTE M A,LIZ-MARZÁN L M. Carbon nanotubes encapsulated in wormlike hollow silica shells[J]. Small,2006,2(10):1174-1177.
[43] MASTROIANNI A J,CLARIDGE S A,ALIVISATOS A P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds[J]. Journal of the American Chemical Society,2009,131(24):8455-8459.
[44] LOWETH C J,CALDWELL W B,PENG X,et al. DNA-based assembly of gold nanocrystals[J]. Angewandte Chemie International Edition,1999,38(12):1808-1812.
[45] XU L,MA W,WANG L,et al. Nanoparticle assemblies:dimensional transformation of nanomaterials and scalability[J]. Chemical Society Reviews,2013,42(7):3114-3126.
[46] WEI Y,HAN S,KIM J,et al. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles[J]. Journal of the American Chemical Society,2010,132(32):11018-11020.
[47] JUNG S H,CHEN C,CHA S H,et al. Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges[J]. Journal of the American Chemical Society,2011,133(28):10688-10691.
[48] DING T,SONG K,CLAYS K,et al. Fabrication of 3D photonic crystals of ellipsoids:convective self-assembly in magnetic field[J]. Advanced Materials,2009,21(19):1936-1940.
[49] GAST A P,ZUKOSKI C F. Electrorheological fluids as colloidal suspensions[J]. Advances in Colloid and Interface Science,1989,30:153-202.
[50] HERMANSON K D,LUMSDON S O,WILLIAMS J P,et al. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions[J]. Science,2001,294(5544):1082-1086.
[51] VELEV O D,BHATT K H. On-chip micromanipulation and assembly of colloidal particles by electric fields[J]. Soft Matter,2006,2(9):738-750.
[52] BOKER A,HE J,EMRICK T,et al. Self-assembly of nanoparticles at interfaces[J]. Soft Matter,2007,3(10):1231-1248.
[53] ZHANG X,CHENG X,ZHANG Q. Nanostructured energy materials for electrochemical energy conversion and storage:a review[J]. Journal of Energy Chemistry,2016,25(6):967-984.
[54] 马昊,刘磊,苏杰,等. 锂离子电池Sn基负极材料研究进展[J]. 材料工程,2017,45(6):138-146. MA H,LIU L,SU J,et al. Research progress on tin-based anode materials for lithium ion batteries[J]. Journal of Materials Engineering,2017,45(6):138-146.
[55] XIA F,HU X,SUN Y,et al. Layer-by-layer assembled MoO2-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries[J]. Nanoscale,2012,4(15):4707-4711.
[56] 赵云,金玉红,王莉,等. 自组装多级结构在锂离子电池中的应用[J]. 化学进展,2018,30(11):1761-1769. ZHAO Y,JIN Y H,WANG L,et al. The application of self-assembled hierarchical structures in lithium-ion batteries[J]. Progress in Chemistry,2018,30(11):1761-1769.
[57] 刘乐浩. 铜、硅纳米颗粒的自组装及其在锂离子电池阳极中的应用[D]. 西安:西北工业大学,2016. LIU L H. Self-assembly of copper and silicon nanoparticles for lithium-ion battery anodes[D]. Xi'an:Northwestern Polytechnical University,2016.
[58] ZHOU X S,YIN Y X,WAN L J,et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advanced Energy Materials,2012,2(1):1086-1090.
[59] ETACHERI V,SEISENBAEVA G A,CARUTHERS J,et al. Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage[J]. Advanced Energy Materials,2015,5(5):1401289.
[60] WANG X,CAO X,BOURGEOIS L,et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2012,22(13):2682-2690.
[61] DEMIR-CAKAN R,HU Y S,ANTONIETTI M,et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties[J]. Chemistry of Materials,2008,20(4):1227-1229.
[62] LIU R,YANG S,WANG F,et al. Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications[J]. ACS Applied Materials & Interfaces,2012,4(3):1537-1542.
[63] WANG S C,YANG Y,ZHOU X Y,et al. Layer-by-layer assembled sandwich-like carbon nanotubes/graphene oxide composite as high-performance electrodes for lithium-ion batteries[J]. International Journal of Electrochemical Science,2013,8:9692-9703.
[64] KIM G P,NAM I,KIM N D,et al. A synthesis of graphene/Co3O4 thin films for lithium ion battery anodes by coelectrodeposition[J]. Electrochemistry Communications,2012,22:93-96.
[65] HA D H,ISLAM M A,ROBINSON R D. Binder-free and carbon-free nanoparticle batteries:a method for nanoparticle electrodes without polymeric binders or carbon black[J]. Nano Letters,2012,12(10):5122-5130.
[66] YU A,PARK H W,DAVIES A,et al. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries[J]. The Journal of Physical Chemistry Letters,2011,2(15):1855-1860.
[67] LIU L,LYU J,ZHAO T,et al. Preparations and properties of porous copper materials for lithium-ion battery applications[J]. Chemical Engineering Communications,2016,203(6):707-713.
[68] TUNG S O,HO S,YANG M,et al. A dendrite-suppressing composite ion conductor from aramid nanofibres[J]. Nature Communications,2015,6:6152.
[69] LIU X,PENG S,GAO S,et al. Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte[J]. ACS Applied Materials & Interfaces,2018,10(18):15691-15696.
[70] LIU L,CHOI B G,TUNG S O,et al. Materials engineering of high-performance anodes as layered composites with self-assembled conductive networks[J]. The Journal of Physical Chemistry C,2018,122(25):14014-14028.
[71] WANG S C,YANG J,ZHOU X Y,et al. Electrochemical properties of carbon nanotube/graphene oxide hybrid electrodes fabricated via layer-by-layer self-assembly[J]. Journal of Electroanalytical Chemistry,2014,722/723:141-147.
[72] HA D H,LY T,CARON J M,et al. A general method for high-performance Li-ion battery electrodes from colloidal nanoparticles without the introduction of binders or conductive-carbon additives:the cases of MnS, Cu2-xS, and Ge[J]. ACS Applied Materials & Interfaces,2015,7(45):25053-25060.
[73] YANG Y,CHEN D,LIU B,et al. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(14):7497-7504.
[74] LIU L,CHOI B G,TUNG S O,et al. Low-current field-assisted assembly of copper nanoparticles for current collectors[J]. Faraday Discussions,2015,181:383-401.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[3] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[4] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[5] 杜娟, 魏子明, 郑世辑, 陈亚军, 胡雪兰, 汪睿. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48(2): 22-31.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[8] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[9] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[10] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[11] 闫智然, 艾轶博, 王祎旋, 王煜, 何峻, 王海成. FeCo/PPy纳米复合材料的合成及其电磁性能调控[J]. 材料工程, 2019, 47(3): 63-70.
[12] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[13] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[14] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[15] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn