Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 23-30    DOI: 10.11868/j.issn.1001-4381.2019.000594
  综述 本期目录 | 过刊浏览 | 高级检索 |
胶体纳米晶合成与形貌控制策略及机理
吴怡芳1, 崇少坤2, 柳永宁2, 郭生武2, 白利锋1, 张翠萍1, 李成山1
1. 西北有色金属研究院, 西安 710016;
2. 西安交通大学 金属材料与强度重点实验室, 西安 710049
Mechanisms and strategies on colloidal nanocrystalline synthesis and morphology control
WU Yi-fang1, CHONG Shao-kun2, LIU Yong-ning2, GUO Sheng-wu2, BAI Li-feng1, ZHANG Cui-ping1, LI Cheng-shan1
1. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China;
2. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(2531 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 胶体纳米晶合成与控制策略主要从动力学方面考虑,一般要结合液相胶体成核生长理论和晶体生长理论来分析。本文首先从成核阶段、生长阶段和熟化阶段的控制方面阐述了胶体纳米晶形貌合成与控制。然后对于经典晶体学理论解释不了的现象,阐述了选择吸附机理、有效单体机理、取向连接机理等用来解释胶体纳米晶的合成机理。本文还对近年来发展的其他一些合成纳米材料的新机理或多种机理共同作用做了简要介绍。最后,对纳米晶合成与形貌控制的前景作了概述,认为定量和精准结构控制是纳米晶形貌合成与控制面临的巨大挑战和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴怡芳
崇少坤
柳永宁
郭生武
白利锋
张翠萍
李成山
关键词 纳米晶形貌合成机理    
Abstract:Synthesis and control strategy of colloidal nanocrystals are mainly concerned with dynamic factors. Generally, theory of nucleation of liquid phase colloids and crystal growth are considered. Firstly, the strategies on colloidal nanocrystalline synthesis and morphology control at the stage of nucleation, growth and ripening were reviewed in this paper. Secondly, selective-adsorption mechanism, effective-monomer mechanism and oriented-attachment mechanisms were briefly introduced for the phenomena that can not be explained by classical crystal growth theory. It was also introduced briefly the joint action of some new mechanisms or multiple mechanisms on synthesis of nano-materials in recent years. Finally, perspectives on future development of nanocrystalline synthesis and morphology control were presented. It is believed that quantitative and precise structural control is of great importance and will be a huge challenge and development trend in nanocrystalline synthesis and morphology control.
Key wordsnanocrystal    morphology    synthesis    mechanism
收稿日期: 2019-05-30      出版日期: 2020-05-28
中图分类号:  TB383  
通讯作者: 吴怡芳(1977-),女,教授级高工,博士,研究方向为新能源材料,联系地址:西安市未央区未央路96号西北有色金属研究院(710016),E-mail:wyf7777v@126.com     E-mail: wyf7777v@126.com
引用本文:   
吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 胶体纳米晶合成与形貌控制策略及机理[J]. 材料工程, 2020, 48(5): 23-30.
WU Yi-fang, CHONG Shao-kun, LIU Yong-ning, GUO Sheng-wu, BAI Li-feng, ZHANG Cui-ping, LI Cheng-shan. Mechanisms and strategies on colloidal nanocrystalline synthesis and morphology control. Journal of Materials Engineering, 2020, 48(5): 23-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000594      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/23
[1] LIM B, JIANG M, PEDRO H C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302-1305.
[2] ZHAO M, CHEN Z, LYU Z, et al. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400℃ and enhanced catalytic activity[J]. Journal of the American Chemical Society, 2019, 141(17):7028-7036.
[3] JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1):23-26.
[4] LI L, SALAMONCZYK M, JÁKLI A, et al. A dual modulated homochiral helical nanofilament phase with local columnar ordering formed by bent core liquid crystals:effects of molecular chirality[J]. Small, 2016, 12(29):3944-3955.
[5] LIU H, LIU T, ZHANG H, et al. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity[J]. Adv Funct Mater, 2015, 25(34):5435-5443.
[6] CHEN W T, ZHU AY, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Lett, 2017, 17(5):3188-3194.
[7] WU P C,TSAI, W Y,CHEN W T, et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Lett, 2017, 17(1):445-452.
[8] LU J, CHEN Z H, MA Z F, et al. The role of nanotechnology in the development of battery materials for electric vehicles[J]. Nature Nanotechnology, 2016, 11:1031-1038.
[9] CHONG S K, SUN L, SHU C Y, et al. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage[J]. Nano Energy, 2019, 63:103868.
[10] CHONG S K, WU Y F, CAO G Z, et al. Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries[J]. Energy Storage Materials, 2019, 22:120-127.
[11] CHONG S K, WU Y F, LIU C F, et al. Cryptomelane-type MnO2/carbon nanotube composites as bifunctional electrode material for high capacity potassium-ion full batteries[J]. Nano Energy, 2018, 54:106-115.
[12] CHONG S K, CHEN Y Z, ZHENG Y, et al. Potassium ferrous ferricyanide nanoparticles as high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry:A, 2017, 5(43):22465-22471.
[13] PARK J H, SEO J, PARK S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials, 2015, 27(27):4013-4019.
[14] STRANKS S D, SANITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10:391-402.
[15] MATSUHISA N, INOUE D, ZALAR P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes[J]. Nat Mater, 2017, 16:834-840.
[16] MIYAMOTO A, LEE S, COORAY F N, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Nanotechnology, 2017, 12:907-913.
[17] ZHENG G X, HOLGER MÜHLENBERND, MITCHELL KENNEY, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10:308-312.
[18] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19):8706-8715.
[19] STEIGERWALD M, BRUS L E. Semiconductor crystallites:a class of large molecules[J]. Acc Chem Res, 1990, 23:183-188.
[20] TAY C Y, MUTHU M, CHIA S L, et al. Reality check for nanomaterials-mediated therapy with 3D biomimetic culture systems[J]. Adv Funct Mater, 2016, 26(23):4046-4065.
[21] SETYAWATI M I, TAY C Y, BAY B H, et al. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin[J]. ACS Nano, 2017, 11(5):5020-5030.
[22] TAY C Y, SETYAWATI M I, LEONG D T. Nanoparticle density:a critical biophysical regulator of endothelial permeability[J]. ACS Nano, 2017, 11(3):2764-2772.
[23] ORIEKHOVA O, STOLL S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter[J]. Environ Sci Nano, 2018,5(3):792-799.
[24] ALIMI O S, FARNER B J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments:aggregation, deposition, and enhanced contaminant transport[J]. Environ Sci Technol, 2018, 52(4):1704-1724.
[25] TERHALLE A, JEANNEAU L, MARTIGNAC M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environ Sci Technol, 2017, 51(23):13689-13697.
[26] JUNY W, CHOI J S, CHEON J W. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes[J]. Angew Chem Int Ed, 2006, 45(21):3414-3439.
[27] GUO Q J, SUK J K, MAHAPRASEAD K, et al. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells[J]. J Am Chem Soc, 2008, 8(9):2982-2987.
[28] 刘伶俐,汪杨. 表面活性剂对纳米材料形貌及尺寸控制的影响[J]. 长春师范大学学报(自然科学版),2014, 33(6):62-64. LIU L L, WANG Y. The influence of surfactant on the size control and shape of nano materials[J]. Journal of Changchun Normal University (Natural Science), 2014, 33(6):62-64.
[29] 张静,丁长坤,段镜月,等. 聚乳酸/纤维素纳米晶复合材料的制备与性能研究[J]. 中国塑料, 2018, 32(3):22-26. ZHANG J, DING C K, DUAN J Y, et al. Preparation and properties of polylactic acid/cellulose nanocrystal composites[J]. China Plastics, 2018, 32(3):22-26.
[30] 李丽华,王鹏,张金生,等. 溶胶-凝胶法合成纳米材料研究进展[J]. 化工新型材料, 2019, 47(1):19-23. LI L H, WANG P, ZHANG J S, et al. Research progress of nanomaterial synthesized via sol-gel method[J]. New Chemical Materials, 2019, 47(1):19-23.
[31] XIA Y N, XIONG Y, LIM B, et al. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics?[J]. Angewandte Chemie International Edition, 2009, 48(1):60-103.
[32] SUGIMOTO T. Preparation of monodispersed colloidal particles[J].Adv Colloid Interface Sci, 1987, 28:65-108.
[33] ZENG H C. Synthetic architecture of interior space for inorganic nanostructures[J]. J Mater Chem, 2006, 16(7):649-662.
[34] CHEN Q, RICHARDSON N V. Surface facetting induced by adsorbates[J]. Prog Surf Sci, 2003, 73(4/8):59-77.
[35] HARRIS P J F. Sulphur-induced faceting of platinum catalyst particles[J]. Nature, 1986, 323:792-794.
[36] BARANOVA E A, BOCK C, ILIN D, et al. Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts[J]. Surf Sci, 2006, 600(17):3502-3511.
[37] YANG N L, ZHANG Z C, CHEN B O, et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation[M]. Advanced Materials, 2017, 29(29):1700769.
[38] SUN Y, MAYERS B, HERRICKS T, et al. Polyol synthesis of uniform silver nanowires:a plausible growth mechanism and the supporting evidence[J]. Nano Lett, 2003, 3:955-960.
[39] SUN Y, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601):2176-2179.
[40] XIONG Y, CHEN J, WILEY B, et al. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process[J]. Nano Lett, 2005, 5:1237-1242.
[41] PENG A Z, PENG X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth[J]. Journal of the American Chemical Society, 2002, 124(13):3343-3353.
[42] JUN Y W, LEE S M, KANG N J, et al. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system[J]. Journal of the American Chemical Society, 2001, 123(21):5150-5151.
[43] WOHLRAB S, PINNA N, ANTONIETTI M, et al. Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures[J]. Chem Eur J, 2005, 11(10):2903-2913.
[44] PENN R L, BANFIELD J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania[J]. Geochimica et Cosmochimica Acta, 1999, 63(10):1549-1557.
[45] YEADON M, GHALY M, YANG J C, et al. "Contact epitaxy" observed in supported nanoparticles[J]. Appl Phys Lett, 1998, 73:3208-3210.
[46] 张海斌,侯晓刚,朱康伟. 高温下合成ZnSe,ZnO枝状纳米晶及其取向连接生长[J]. 兰州大学学报(自然科学版), 2013, 49(6):842-846. ZHANG H B, HOU X G, ZHU K W. Formation of ZnSe and ZnO branched nanocrystals by oriented attachment under high temperature[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(6):842-846.
[47] YU Z L, QIN B, MA Z Y, et al. Superelastic hard carbon nanofiber aerogels[J]. Advanced Materials, 2019, 31:1900651.
[48] WANG X, RUDITSKIY A, XIA Y N. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications[J]. National Science Review, 2016, 3(4):520-533.
[1] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[4] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[5] 孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
[6] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[7] 刘兴华, 王军丽, 王亚玲, 张利, 杨永珍, 刘旭光. 多色荧光碳点调控及其应用[J]. 材料工程, 2020, 48(4): 36-45.
[8] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[9] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[10] 梁效铭, 钟溢健, 马丽丽, 李聪, 陈南春, 解庆林. 硅藻基As(Ⅴ)表面印迹材料的制备与表征[J]. 材料工程, 2020, 48(1): 156-161.
[11] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[12] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[13] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[14] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[15] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn