Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 103-110    DOI: 10.11868/j.issn.1001-4381.2019.000595
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究
班丽卿1,2, 高敏1,2, 庞国耀1,2, 柏祥涛1,2, 李钊1,2, 庄卫东1,2
1. 北京有色金属研究总院, 北京 100088;
2. 国联汽车动力 电池研究院有限责任公司, 北京 101400
Phosphorus modification of Li-rich and Mn-based Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material for lithium-ion battery
BAN Li-qing1,2, GAO Min1,2, PANG Guo-yao1,2, BAI Xiang-tao1,2, LI Zhao1,2, ZHUANG Wei-dong1,2
1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. China Automotive Battery Research Institute Co., Ltd., Beijing 101400, China
全文: PDF(5196 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为提高高比容量的层状富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2材料的电化学性能,对材料添加了不同含量的NH4H2PO4,并对其进行相关研究。主要是对原样和改性后的材料进行X射线衍射(XRD)、高分辨透射电镜(HRTEM)等物理化学性能测试,以及电化学阻抗谱(EIS)、首次充放电性能和倍率性能等电化学性能测试。结果表明:添加0.3%(质量分数,下同)磷元素材料(LMNCOP-03)的综合性能最优,首次放电比容量为280 mAh·g-1,1 C容量为212.2 mAh·g-1,3 C容量为170.6 mAh·g-1。同时EIS测试表明引入0.3%磷的材料具有较低的表面阻抗R和电荷传递电阻Rctsf
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
班丽卿
高敏
庞国耀
柏祥涛
李钊
庄卫东
关键词 锂离子电池富锂锰基材料改性倍率性能    
Abstract:The enhanced electrochemical performance of the lithium-rich solid solution Li1.2[Co0.13Ni0.13Mn0.54]O2 (LMNCO) cathode was enhanced by phosphorus incorporation. The various phosphorus contents were introduced by adding NH4H2PO4 into the raw materials. The pristine sample and the sulfur incorporated samples were characterized by X-ray diffraction(XRD), high resolution transmission electron microscopy(HRTEM), electrochemical impedance spectroscopy(EIS). Electrochemical performance was assessed by measuring parameters such as charge and discharge capacity, rate capability in lithium ion cells. The results show that the LMNCOP-03 material has the best initial discharge capacity of 280 mAh·g-1. Moreover, it has about 212.2 mAh·g-1 and 170.6 mAh·g-1 at 1.0 C and 3.0 C rate, respectively. The LMNCOP-03 material shows an improved rate performance attributed to the enhanced electrical conductivity and lithium ion diffusion, which is proved by EIS tests.
Key wordslithium-ion battery    Li-rich and Mn-based material    modification    phosphorus    rate perform-ance
收稿日期: 2019-06-24      出版日期: 2020-07-21
中图分类号:  O646.21  
  TM912.9  
基金资助: 
通讯作者: 庄卫东(1969-),男,教授,博士,研究方向为锂离子电池正极材料,联系地址:北京市怀柔区雁栖开发区雁栖南西街12号有研粉末新材料有限公司(101407),E-mail:wdzhuang@126.com     E-mail: wdzhuang@126.com
引用本文:   
班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
BAN Li-qing, GAO Min, PANG Guo-yao, BAI Xiang-tao, LI Zhao, ZHUANG Wei-dong. Phosphorus modification of Li-rich and Mn-based Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material for lithium-ion battery. Journal of Materials Engineering, 2020, 48(7): 103-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000595      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/103
[1] LIM J H, CHUNG C G, SUNG Y W, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. Journal of Power Sources, 2009, 189(1):571-575.
[2] 班丽卿,庄卫东,卢华权,等. 层状锂镍钴锰氧化物正极材料的改性研究进展[J]. 稀有金属,2013, 37(5):820-833. BAN L Q, ZHUANG W D, LU H Q, et al. Progress in modification of layered cathode material Li-Ni-Co-Mn-O[J]. Chinese Journal of Rare Metals, 2013, 37(5):820-833.
[3] GUO R, SHI P, CHNEG X, et al. Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material[J]. Electrochimica Acta, 2009, 54(24):5796-5803.
[4] GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1):84-86.
[5] BETTGE M, LI Y, SANKARAN B, et al. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2 based lithium-ion cells by modifying the positive electrode with alumina[J]. Journal of Power Sources, 2013, 233(4):346-357.
[6] LIU Y, NING D, ZHENG L, et al. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43- with Na3PO4[J]. Journal of Power Sources, 2018,375(1):1-10.
[7] MA L, MAO L, ZHAO X, et al. Improving the structural stability of Li-rich layered cathode materials by constructing an antisite defect nanolayer through polyanion doping[J]. Chem Electro Chem, 2017, 4(12):3068-3074.
[8] BAN L Q, YIN Y P, ZHUANG W D, et al. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation[J]. Electrochemical Acta, 2015(187):212-218.
[9] CHO J, KIM Y W, KIM B, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles[J]. Angewandte Chemie International Edition, 2003, 42:1618-1621.
[10] LIU H, CHEN C, DU C, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layer as a high performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(6):2634-2641.
[11] NGOC H V, JONG C I, SANJITH U, et al. Synergic coating and doping effects of Ti-modified integrated layered-spinel Li1.2Mn0.75Ni0.25O2+d as a high capacity and long lifetime cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(5):2200-2211.
[12] LIU S, LIU Z, SHEN X, et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials, 2018, 8(31):1802105.
[13] HUANG J, LIU H, HU T, et al. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation[J]. Journal of Power Sources, 2018, 375(1):21-28.
[14] MU K, CAO Y, HU G, et al. Enhanced electrochemical performance of Li-rich cathode Li1.2Ni0.2Mn0.6O2 by surface modification with WO3 for lithium ion batteries[J]. Electrochimica Acta, 2018, 273:88-97.
[15] LI X, ZHANG K, MITLIN D, et al. Fundamental insight into Zr modification of Li+ and Mn-rich cathodes:combined transmission electron microscopy and electrochemical impedance spectroscopy study[J]. Chemistry of Materials, 2018, 30(8):2566-2573.
[16] 刘祥欢,庄卫东,彭敏,等. 锂离子电池富锂锰基正极材料的研究进展[J].稀有金属, 2017, 41(5):534-552. LIU X H, ZHUANG W D, PENG M, et al. Research progress in Li-rich manganese-based cathode material for Li-ion battery[J]. Chinese Journal of Rare Metals, 2017, 41(5):534-552.
[1] 杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
[2] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[3] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 李忠裕, 李云同, 吴雯倩, 刘玲, 彭超华, 袁丛辉, 戴李宗. 磷掺杂中空碳球的制备及其电容性能[J]. 材料工程, 2020, 48(3): 105-111.
[6] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[7] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[8] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[11] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[12] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[13] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[14] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[15] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn