Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 103-110    DOI: 10.11868/j.issn.1001-4381.2019.000595
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究
班丽卿1,2, 高敏1,2, 庞国耀1,2, 柏祥涛1,2, 李钊1,2, 庄卫东1,2,*()
1 北京有色金属研究总院, 北京 100088
2 国联汽车动力 电池研究院有限责任公司, 北京 101400
Phosphorus modification of Li-rich and Mn-based Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material for lithium-ion battery
Li-qing BAN1,2, Min GAO1,2, Guo-yao PANG1,2, Xiang-tao BAI1,2, Zhao LI1,2, Wei-dong ZHUANG1,2,*()
1 General Research Institute for Nonferrous Metals, Beijing 100088, China
2 China Automotive Battery Research Institute Co., Ltd., Beijing 101400, China
全文: PDF(5196 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为提高高比容量的层状富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2材料的电化学性能,对材料添加了不同含量的NH4H2PO4,并对其进行相关研究。主要是对原样和改性后的材料进行X射线衍射(XRD)、高分辨透射电镜(HRTEM)等物理化学性能测试,以及电化学阻抗谱(EIS)、首次充放电性能和倍率性能等电化学性能测试。结果表明:添加0.3%(质量分数,下同)磷元素材料(LMNCOP-03)的综合性能最优,首次放电比容量为280 mAh·g-1,1 C容量为212.2 mAh·g-1,3 C容量为170.6 mAh·g-1。同时EIS测试表明引入0.3%磷的材料具有较低的表面阻抗Rsf和电荷传递电阻Rct

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
班丽卿
高敏
庞国耀
柏祥涛
李钊
庄卫东
关键词 锂离子电池富锂锰基材料改性倍率性能    
Abstract

The enhanced electrochemical performance of the lithium-rich solid solution Li1.2[Co0.13Ni0.13Mn0.54]O2 (LMNCO) cathode was enhanced by phosphorus incorporation. The various phosphorus contents were introduced by adding NH4H2PO4 into the raw materials. The pristine sample and the sulfur incorporated samples were characterized by X-ray diffraction(XRD), high resolution transmission electron microscopy(HRTEM), electrochemical impedance spectroscopy(EIS). Electrochemical performance was assessed by measuring parameters such as charge and discharge capacity, rate capability in lithium ion cells. The results show that the LMNCOP-03 material has the best initial discharge capacity of 280 mAh·g-1. Moreover, it has about 212.2 mAh·g-1 and 170.6 mAh·g-1 at 1.0 C and 3.0 C rate, respectively. The LMNCOP-03 material shows an improved rate performance attributed to the enhanced electrical conductivity and lithium ion diffusion, which is proved by EIS tests.

Key wordslithium-ion battery    Li-rich and Mn-based material    modification    phosphorus    rate perform-ance
收稿日期: 2019-06-24      出版日期: 2020-07-21
中图分类号:  O646.21  
  TM912.9  
基金资助:国家自然科学基金-联合基金(U1764255);北京市自然科学基金(L182023)
通讯作者: 庄卫东     E-mail: wdzhuang@126.com
作者简介: 庄卫东(1969-), 男, 教授, 博士, 研究方向为锂离子电池正极材料, 联系地址:北京市怀柔区雁栖开发区雁栖南西街12号有研粉末新材料有限公司(101407), E-mail:wdzhuang@126.com
引用本文:   
班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
Li-qing BAN, Min GAO, Guo-yao PANG, Xiang-tao BAI, Zhao LI, Wei-dong ZHUANG. Phosphorus modification of Li-rich and Mn-based Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material for lithium-ion battery. Journal of Materials Engineering, 2020, 48(7): 103-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000595      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/103
Fig.1  LMNCO材料和引入不同比例磷的LMNCOP材料的SEM图
(a)LMNCOP-00;(b)LMNCOP-01;(c)LMNCOP-03;(d)LMNCOP-05;(e)LMNCOP-07;(f)LMNCOP-09;(1)20 K; (2)50 K
Sample Particle average value of 50 K field of view/μm Particle average value of 20 K field of view/μm Average value/μm
LMNCOP-00 0.20 0.21 0.20
LMNCOP-01 0.16 0.15 0.16
LMNCOP-03 0.15 0.15 0.15
LMNCOP-05 0.17 0.18 0.17
LMNCOP-07 0.19 0.20 0.20
LMNCOP-09 0.21 0.24 0.23
Table 1  LMNCOP材料的粒径大小统计
Fig.2  LMNCO材料和引入不同比例磷的LMNCOP材料的XRD图(a)LMNCOP-00和LMNCOP-09;(b)所有LMNCOP材料
Fig.3  LMNCOP-03材料的TEM图
Fig.4  LMNCOP-03材料的电子衍射图和HRTEM图(a)电子衍射图; (b)明场视图; (c)HRTEM(500 K); (d)HRTEM(250 K)
Fig.5  LMNCOP-03材料的HRTEM图和EDS图谱
(a)HRTEM(250 K);(b)析出的第一区域EDS表征(对应于图 5(a)中的1);(c)析出的第二区域EDS表征(对应于图 5(a)中的2)
Fig.6  LMNCOP-03材料的示意图
Element Atom fraction of the first region/% Atom fraction of the second region/%
O 69.45 68.34
P 30.55 31.66
Table 2  LMNCOP-03材料P,O的EDS元素分析
Fig.7  LMNCO材料和引入不同比例磷的LMNCOP材料的首次充放电曲线
Fig.8  LMNCO材料和引入不同比例磷的LMNCOP材料的倍率性能曲线
Sample Capacity/(mAh·g-1) Initial coulombic efficiency/%
Initial charge Initial discharge
LMNCOP-00 337.5 260.5 77.2
LMNCOP-01 313.8 262.7 83.7
LMNCOP-03 329.2 280.0 85.0
LMNCOP-05 326.7 270.7 82.8
LMNCOP-07 311.0 261.2 84.0
LMNCOP-09 295.0 245.6 83.3
Table 3  LMNCO材料和引入不同比例磷的LMNCOP材料的首次充放电数据
Fig.9  LMNCO材料和引入不同比例磷的LMNCOP的EIS图(a)和对应的等效电路图(b)
Sample Rs Rsf Rct Zw
LMNCOP-00 3.87 33.84 151.8 0.0043
LMNCOP-01 4.29 57.55 123.9 0.0042
LMNCOP-03 2.67 41.17 25.20 0.0032
LMNCOP-05 2.88 102.5 149.95 0.0053
LMNCOP-07 9.22 127.8 246.76 0.0026
LMNCOP-09 9.98 46.88 375.8 0.0028
Table 4  LCNMO材料和引入不同比例磷的LCNMOP材料的等效电路图测定的参数
1 LIM J H , CHUNG C G , SUNG Y W , et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. Journal of Power Sources, 2009, 189 (1): 571- 575.
2 班丽卿, 庄卫东, 卢华权, 等. 层状锂镍钴锰氧化物正极材料的改性研究进展[J]. 稀有金属, 2013, 37 (5): 820- 833.
2 BAN L Q , ZHUANG W D , LU H Q , et al. Progress in modification of layered cathode material Li-Ni-Co-Mn-O[J]. Chinese Journal of Rare Metals, 2013, 37 (5): 820- 833.
3 GUO R , SHI P , CHNEG X , et al. Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material[J]. Electrochimica Acta, 2009, 54 (24): 5796- 5803.
4 GAO J , KIM J , MANTHIRAM A . High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11 (1): 84- 86.
5 BETTGE M , LI Y , SANKARAN B , et al. Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2 based lithium-ion cells by modifying the positive electrode with alumina[J]. Journal of Power Sources, 2013, 233 (4): 346- 357.
6 LIU Y , NING D , ZHENG L , et al. Improving the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 through a cooperative doping of Na+ and PO43- with Na3PO4[J]. Journal of Power Sources, 2018, 375 (1): 1- 10.
7 MA L , MAO L , ZHAO X , et al. Improving the structural stability of Li-rich layered cathode materials by constructing an antisite defect nanolayer through polyanion doping[J]. Chem Electro Chem, 2017, 4 (12): 3068- 3074.
8 BAN L Q , YIN Y P , ZHUANG W D , et al. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation[J]. Electrochemical Acta, 2015, (187): 212- 218.
9 CHO J , KIM Y W , KIM B , et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles[J]. Angewandte Chemie International Edition, 2003, 42, 1618- 1621.
10 LIU H , CHEN C , DU C , et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layer as a high performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (6): 2634- 2641.
11 NGOC H V , JONG C I , SANJITH U , et al. Synergic coating and doping effects of Ti-modified integrated layered-spinel Li1.2Mn0.75Ni0.25O2+d as a high capacity and long lifetime cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6 (5): 2200- 2211.
12 LIU S , LIU Z , SHEN X , et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide[J]. Advanced Energy Materials, 2018, 8 (31): 1802105.
13 HUANG J , LIU H , HU T , et al. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation[J]. Journal of Power Sources, 2018, 375 (1): 21- 28.
14 MU K , CAO Y , HU G , et al. Enhanced electrochemical performance of Li-rich cathode Li1.2Ni0.2Mn0.6O2 by surface modification with WO3 for lithium ion batteries[J]. Electrochimica Acta, 2018, 273, 88- 97.
15 LI X , ZHANG K , MITLIN D , et al. Fundamental insight into Zr modification of Li+ and Mn-rich cathodes:combined transmission electron microscopy and electrochemical impedance spectroscopy study[J]. Chemistry of Materials, 2018, 30 (8): 2566- 2573.
16 刘祥欢, 庄卫东, 彭敏, 等. 锂离子电池富锂锰基正极材料的研究进展[J]. 稀有金属, 2017, 41 (5): 534- 552.
16 LIU X H , ZHUANG W D , PENG M , et al. Research progress in Li-rich manganese-based cathode material for Li-ion battery[J]. Chinese Journal of Rare Metals, 2017, 41 (5): 534- 552.
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 秦建雨, 赵翰鹏, 姚金雨, 张文超, 杨荣杰. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88.
[3] 焦晨, 梁绘昕, 叶昀, 张寒旭, 何志静, 杨友文, 沈理达, 侯锋. 光固化生物陶瓷功能化研究进展[J]. 材料工程, 2022, 50(7): 30-39.
[4] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[5] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[6] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[7] 张安邦, 汪晨阳, 赵尚骞, 常增花, 王建涛. 固态电池中的正极/电解质界面性质研究进展[J]. 材料工程, 2022, 50(11): 46-62.
[8] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[9] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[10] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[13] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[14] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[15] 解齐颖, 张祎, 朱阳, 崔红. 超高温陶瓷改性碳/碳复合材料[J]. 材料工程, 2021, 49(7): 46-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn