Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (2): 71-78    DOI: 10.11868/j.issn.1001-4381.2019.000611
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响
齐业雄1,2, 姜亚明1,2, 李嘉禄1,2
1. 天津工业大学 纺织科学与工程学院, 天津 300387;
2. 天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
Effect of hybrid ratio on mechanical properties of carbon/aramid hybrid fiber multi-layered biaxial weft knitted fabric reinforced composites
QI Ye-xiong1,2, JIANG Ya-ming1,2, LI Jia-lu1,2
1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2. Key Laboratory of Advanced Textile Composites(Ministry of Education), Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(5069 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和"扫帚"形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐业雄
姜亚明
李嘉禄
关键词 混杂复合材料碳纤维芳纶纤维混杂比拉伸性能弯曲性能    
Abstract:Carbon/aramid fiber hybrid multi-layered biaxial weft knitted fabric was prepared in term of intraply hybridization. The mechanical properties and effect of hybrid ratio on mechanical properties were studied. Through uniaxial tension and three-point bending experiments, the tensile and bending properties and effect of hybrid ratio on mechanical properties were obtained. The results show that the tensile properties of composites are improved by adding aramid fibers according to a certain hybrid ratio, which shows a positive hybrid effect. Due to the addition of aramid fibers with good elongation, the tensile fracture elongation of the composites obviously increases, and the failure modes of the composites appear complete brittle fracture mode (C12 material failure mode) and "broom" fiber fracture mode (C8A4, C6A6 material failure mode). Besides, the fracture toughness of carbon fiber reinforced composites is effectively improved by adding aramid fibers at a certain hybrid ratio. The flexural strength and modulus of carbon/aramid hybrid MBWK fabric reinforced composites decrease with the increasing of hybrid ratio. With aramid content changing from 42% (volume fraction, the same below)(C6A6) to 59.2% (C4A8), the decreasing ratio of the bending strength and bending modulus are high. The bending deflection of 0° samples with a hybrid ratio of 59.2% (C4A8) is the highest, the value is 7.49 mm, which is much higher than that of pure aramid fiber or carbon fiber reinforced composites. The bending deflection of all 90° samples is higher than that of pure aramid fiber or pure carbon fiber reinforced composites, which shows the positive hybrid effects.
Key wordshybrid composite    carbon fiber    aramid fiber    hybrid ratio    tensile property    bending property
收稿日期: 2019-06-27      出版日期: 2020-03-03
中图分类号:  TB332  
通讯作者: 齐业雄(1985-),男,讲师,博士,研究方向为复合材料结构设计、复合材料力学,联系地址:天津市西青区宾水西道399号天津工业大学纺织科学与工程学院(300387),E-mail:qiyexiong@tjpu.edu.cn     E-mail: qiyexiong@tjpu.edu.cn
引用本文:   
齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
QI Ye-xiong, JIANG Ya-ming, LI Jia-lu. Effect of hybrid ratio on mechanical properties of carbon/aramid hybrid fiber multi-layered biaxial weft knitted fabric reinforced composites. Journal of Materials Engineering, 2020, 48(2): 71-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000611      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/71
[1] VERMA D, FORTUNATI E, JAIN S, et al.Biomass, biopolymer-based materials, and bioenergy [M].Cambridge: Woodhead Publishing,2019.
[2] 张丹丹,沈洪雷,曹霞,等. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程,2019,47(1): 1-10. ZHANG D D, SHEN H L, CAO X, et al. Research progress in grapheme reinforced aeronautical metal matrix composites[J]. Journal of Materials Engineering, 2019, 47(1): 1-10.
[3] 许国栋,李地红,吴昊宇,等.模糊评价法表征复合材料层合板低能量冲击行为[J].材料导报,2018,32(32): 573-576. XU G D, LI D H, WU H Y,et al.Characterization of low energy impact damage behavior for composite laminates by fuzzy evaluation[J]. Materials Reports,2018,32(32): 573-576.
[4] 刘强,马小康,宗志坚. 斜纹机织碳纤维/环氧树脂复合材料性能及其在电动汽车轻量化设计中的应用[J]. 复合材料学报, 2011, 28(5): 83-88. LIU Q, MA X K, ZONG Z J. Properties of twill-weave carbon fabric/epoxy composites and its application on light-weight design for electric vehicles[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 83-88.
[5] 王春红,支中祥,任子龙,等. 稻壳纤维粒径和掺量分数对水泥复合材料性能的影响[J]. 复合材料学报, 2018, 35(6): 1582-1589. WANG C H, ZHI Z X, REN Z L, et al. Effect of rice husk fiber particle size and content on the properties of cement composite[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1582-1589.
[6] SUBAGIA I, KIM Y. Tensile behavior of hybrid epoxy composite laminate containing carbon and basalt fibers[J]. Science & Engineering of Composite Materials,2014,21(2):211-217.
[7] DEHKORDI M T, NOSRATY H, SHOKRIEH M M, et al. Low velocity impact properties of intraply hybrid composites based on basalt and nylon woven fabrics[J]. Materials & Design, 2010, 31(8): 3835-3844.
[8] 倪楠楠,夏璐,张文宇,等. 苎麻纤维布和玻璃纤维布混杂铺层复合材料的力学性能[J]. 材料工程,2019,47(2): 153-159. NI N N, XIA L, ZHANG W Y, et al. Mechanical properties of ramie fiber cloth and glass fiber cloth hybrid laminated composite[J]. Journal of Materials Engineering, 2019, 47(2): 153-159.
[9] PAIVA J M F D, SANTOS A D N D, REZENDE M C. Mechanical and morphological characterizations of carbon fiber fabric reinforced epoxy composites used in aeronautical field[J]. Materials Research, 2009, 12(3): 367-374.
[10] SUBAGIA I D G A, KIM Y, TIJING L D, et al. Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers[J]. Composites: Part B, 2014, 58(3): 251-258.
[11] 马腾,贾智源,关晓方,等. 混杂比对单向碳-玻层间混编复合材料0°压缩和弯曲性能的影响[J]. 复合材料学报,2017, 34(4): 758-765. MA T, JIA Z Y, GUAN X F, et al. Effects of hybrid ratio on the axial compressed and flexural properties of unidirectional inter-layer carbon-glass hybrid composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 758-765.
[12] DONG C, RANAWEERA-JAYAWARDENA H A, DAVIES I J. Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres[J]. Composites: Part B, 2012, 43(2): 573-581.
[13] PANDYA K S,VEERRAJU C, NAIK N K. Hybrid composites made of carbon and glass woven fabrics under quasi-static loading[J]. Materials & Design, 2011, 32(7): 4094-4099.
[14] 杨斌,章继峰,周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报, 2015, 32(2): 435-443. YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 435-443.
[15] HU J L, JIANG Y M, KO F. Modeling uniaxial tensile properties of multiaxial warp knitted fabrics[J]. Textile Research Journal, 1998, 68(11): 828-834.
[16] JIANG Y M, HU J L, KO F. Characterizing and modeling bending properties of multiaxial warp knitted fabrics[J]. Textile Research Journal, 1999, 69(9): 691-697.
[17] 张卓. 纬编双轴向多层衬纱织物增强复合材料面内力学性能研究[D]. 天津:天津工业大学,2003. ZHANG Z. The analysis of in-plane mechanical properties of multilayered biaxial weft-knitted fabric reinforced composite[D]. Tianjin: Tianjin Polytechnic University, 2003.
[18] QI Y X, LI J L, LIU L S. Tensile properties of multilayer-connected biaxial weft knitted fabric reinforced composites for carbon fibers[J]. Materials & Design, 2014, 54(2): 678-685.
[19] QI Y X, LI J L, LIU L S. Bending properties of the multilayer-connected biaxial weft knitted fabrics-reinforced composites made with carbon fibers[J]. Polymer Composites, 2015, 36(12): 2291-2302.
[20] PEI X Y, SHANG B,CHEN L, et al. Compression properties of multilayer-connected biaxial weft knitted carbon fiber fabric reinforced composites[J]. Composites: Part B, 2016, 91(4): 296-305.
[21] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites: Part A, 2015, 69(2): 195-207.
[22] ULLAH H, HARLAND A R, SILBESCHMIT V V.Experimental and numerical analysis of damage in woven GFRP composites under large-deflection bending[J]. Applied Composite Materials, 2012, 19(5): 769-783.
[1] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[4] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[5] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[6] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[7] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[8] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[9] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[10] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[11] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[12] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[13] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[14] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[15] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn