Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 170-176    DOI: 10.11868/j.issn.1001-4381.2019.000646
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究
郑凌祺1, 李刚1, 杨小平1, 李强2, 石凌飞3
1. 北京化工大学 有机无机复合材料国家重点实验室, 北京 100029;
2. 潍坊市科技合作中心, 山东 潍坊 261000;
3. 公安部第一研究所, 北京 100048
Preparation of cyclodextrin microspheres modified epoxy resin and X-ray penetration mechanism of carbon fiber composites
ZHENG Ling-qi1, LI Gang1, YANG Xiao-ping1, LI Qiang2, SHI Ling-fei3
1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
2. Weifang Science and Technology Cooperation Center, Weifang 261000, Shandong, China;
3. First Research Institute of Ministry of Public Security, Beijing 100048, China
全文: PDF(4263 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用4,4'-二环己基甲烷二异氰酸酯与β-环糊精合成的环糊精微球(CDMS),制备环糊精微球改性环氧树脂(CDEP),表征CDMS的微观形貌及其在环氧树脂中的分散性,研究树脂固化物的交联密度和介电性能;制备T300碳纤维织物复合材料,考察复合材料的X射线穿透性能,提出X射线穿透机理。结果表明:圆球形CDMS的平均粒径为(11.5±2)μm,且在环氧树脂中的分散性良好;随着CDMS添加量的质量分数由0%升至5%,树脂固化物的交联密度由2.50×10-2 mol·cm-3降至2.35×10-2 mol·cm-3,介电常数由4.10降至3.43;30 kV管电压下复合材料X射线穿透率由94.97%升至96.82%,微球的空腔结构减少了X光子在复合材料内部的碰撞次数,有效提高了X射线穿透性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑凌祺
李刚
杨小平
李强
石凌飞
关键词 碳纤维环氧树脂复合材料介电性能X射线穿透    
Abstract:Cyclodextrin microspheres (CDMS) was synthesized by 4,4'-dicyclohexylmethane diisocyanate and β-cyclodextrin, and applied to prepare the cyclodextrin microspheres modified epoxy resin(CDEP). The microscopic morphology and dispersibility of CDMS in epoxy resin were characterized. Crosslinking density and dielectric properties of CDMS modified epoxy resin were investigated.The T300 carbon fiber fabric/modified epoxy composite was prepared. The X-ray penetration properties of the composite were investigated and X-ray penetration mechanism was proposed. The results show that the dispersibility of spherical CDMS in epoxy resin is good and its average diameter is about (11.5±2) μm. As mass fraction of CDMS is increased from 0% to 5%, the crosslink density of epoxy resin is reduced from 2.50×10-2 mol·cm-3 to 2.35×10-2 mol·cm-3 and dielectric constant is decreased from 4.10 to 3.43. X-ray penetration of composites is increased from 94.97% to 96.82% at 30 kV tube voltage. The number of collisions of X-rays inside the composite is reduced by the cavity structure of the microspheres, which effectively improves the X-ray penetration performance of composites.
Key wordscarbon fiber    epoxy resin    composite    dielectric property    X-ray penetration
收稿日期: 2019-07-09      出版日期: 2020-11-20
中图分类号:  TB332  
基金资助: 
通讯作者: 李刚(1974-),男,研究员,博士,研究方向为碳纤维树脂基复合材料,联系地址:北京市朝阳区北三环东路15号北京化工大学(100029),E-mail:ligang@mail.buct.edu.cn     E-mail: ligang@mail.buct.edu.cn
引用本文:   
郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
ZHENG Ling-qi, LI Gang, YANG Xiao-ping, LI Qiang, SHI Ling-fei. Preparation of cyclodextrin microspheres modified epoxy resin and X-ray penetration mechanism of carbon fiber composites. Journal of Materials Engineering, 2020, 48(11): 170-176.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000646      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/170
[1] 马少华,王勇刚,回丽,等. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J].材料工程, 2016, 44(2):81-87. MA S H,WANG Y G,HUI L,et al.Influence of hydrothermal environment on flexural property of carbon fiber epoxy composite[J].Journal of Materials Engineering,2016,44(2):81-87.
[2] 李涛,陈蔚,成理,等.碳纤维复合材料医用床面板研制[J].医学信息,2009,1(5):57-59. LI T,CHEN W,CHENG L,et al.Study and manufacture of the table top of carbon fiber composite for medical equipment[J].Medical Information,2009,1(5):57-59.
[3] 吴焱,邵明.泡沫夹芯结构碳纤维复合材料医疗床板的强度研究[J].高科技纤维与应用,2010,35(6):35-38. WU Y,SHAO M.Strength research of "sandwich" structure on carbon fiber composite medical-bed plate[J].Hi-Tech Fiber and Application,2010,35(6):35-38.
[4] 何烨,肖建文,姚烛威,等.碳纤维表面物理结构对复合材料界面剪切强度的影响[J].材料工程,2019,47(2):146-152. HE Y,XIAO J W,YAO Z W,et al.Effect of surface physical structures on interfacial shear strength of carbon fibers reinforced epoxy resin composite[J].Journal of Materials Engineering,2019,47(2):146-152.
[5] 高坤,孙宝岗,杨智勇,等.透波复合材料用树脂基体介电性能的改善研究进展[J].功能材料,2015,46(增刊2):44-48. GAO K,SUN B G,YANG Z Y,et al.Improvement research progress in the dielectric properties of resin matrix for wave-transparent composites[J]. Journal of Functional Materials,2015,46(Suppl 2):44-48.
[6] GU J,DONG W,XU S,et al.Development of wave-transparent,light-weight composites combined with superior dielectric performance and desirable thermal stabilities[J].Composites Science and Technology,2017,144:185-192.
[7] VOLKSEN W,MILLER,ROBERT D,et al.Low dielectric constant materials[J].Chemical Reviews,2010,110(1):56-110.
[8] ZHAO X Y,LIU H J.Review of polymer materials with low dielectric constant[J].Polymer International,2010,59(5):597-606.
[9] 周成飞.低介电常数聚合物材料的研究进展[J].高分子材料科学与工程,2017,43(14):41-44. ZHOU C F.Development of low dielectric constant polymer materials[J].Polymer Materials Science and Engineering,2017,43(14):41-44.
[10] 黄伟平.低介电常数高分子材料[J].合成材料老化与应用,2008,37(2):39-44. HUANG W P.Low dielectric constant polymer[J].Synthetic Materials Aging and Application,2008,37(2):39-44.
[11] WANG J Y,YANG S Y,HUANG Y L,et al.Synthesis and properties of trifluoromethyl groups containing epoxy resins cured with amine for low Dk materials[J].Journal of Applied Polymer Science,2012,124(3):2615-2624.
[12] MAEX K.Porous low dielectric constant materials for microelectronics[J].Journal of Applied Physics,2006, 364:201-215.
[13] TANG Y,YUAN L,LIANG G,et al.High performance low-kcyanate ester resins with a thermally stable cyclodextrin microsphere[J].RSC Advances,2014,4(31):16136-16145.
[14] ZHAO C,WEI X,HUANG Y,et al.Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores[J].Physical Chemistry Chemical Physics,2016,18(28):19183-19193.
[15] 蔡宏洋,李刚,刘海洋.柔性胺T403对环氧树脂体系力学性能及交联密度的影响[J].玻璃钢/复合材料,2009(1):38-41. CAI H Y,LI G,LIU H Y.Effects of flexible amine T403 on the mechanic properties and crosslinking density in epoxy systems[J].Fiber Reinforced Plastics/Composites,2009(1):38-41.
[16] 杜继星,张晓敏,宁静,等.医用诊断X射线的衰减与防护研究[J].军事医学,2016,40(6):505-507. DU J X,ZHANG X M,NING J,et al.Attenuation and protection study of medical diagnostic X-rays[J].Military Medical Sciences,2016,40(6):505-507.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[3] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[4] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[5] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[6] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[7] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[8] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[9] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[10] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[11] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[12] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[13] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[14] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[15] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn