Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (6): 132-139    DOI: 10.11868/j.issn.1001-4381.2019.000648
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能
冯景鹏1, 余欢1,*(), 徐志锋1, 蔡长春1, 王振军1, 胡银生1, 王雅娜2
1 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
2 中国航发北京航空材料研究院, 北京 100095
Microstructure, bending and shear properties of 2.5D shallow cross-linked Cf/Al composites
Jing-peng FENG1, Huan YU1,*(), Zhi-feng XU1, Chang-chun CAI1, Zhen-jun WANG1, Yin-sheng HU1, Ya-na WANG2
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(7818 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用真空压力浸渗法制备体积分数为50%的2.5D浅交直联Cf/Al复合材料,研究复合材料的显微组织以及室温、高温下弯曲和剪切性能,分析复合材料弯曲和剪切性能的破坏失效机理。结果表明:2.5D浅交直联Cf/Al复合材料经向、纬向显微组织均存在一定的微孔、纤维丝偏聚等缺陷。室温的弯曲强度、弯曲模量、剪切强度分别为268.4 MPa,75.2 GPa和41.0 MPa,350℃的弯曲强度、弯曲模量、剪切强度分别为139 MPa,70.9 GPa和39.2 MPa,400℃的弯曲强度、弯曲模量、剪切强度分别为97.6 MPa,68.5 GPa和29.9 MPa;其中,弯曲失效主要由于内侧面受压导致经向纤维束在压应力作用下被压断,纬向纤维束产生挤压变形;外侧面受拉处随测试温度升高复合材料拉伸破坏现象不明显;而剪切破坏首先出现在基体与纤维束界面损伤处,室温下纤维束被拔出,断口不平齐,350,400℃时纤维束断口呈现45°破坏;经向纤维束屈曲与纬向纤维束挤压变形程度随测试温度升高越来越严重。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯景鹏
余欢
徐志锋
蔡长春
王振军
胡银生
王雅娜
关键词 2.5D浅交直联Cf/Al复合材料显微组织弯曲性能剪切性能    
Abstract

2.5D shallow cross-linked Cf/Al composites with volume fraction of 50% were fabricated by vacuum pressure infiltration. The microstructure, bending and shear properties at room and high temperature were studied. The failure mechanism of bending and shear properties of the composites were analyzed. The results indicate that the warp and weft microstructures of 2.5D shallow cross-linked Cf/Al composites have some defects such as microvoid and fiber aggregation. The bending strength, bending modulus and shear strength of the composites at room temperature are 268.4 MPa, 75.2 GPa and 41.0 MPa, respectively. The bending strength, bending modulus and shear strength of the composites at 350 ℃ are 139 MPa, 70.9 GPa and 39.2 MPa, respectively. The bending strength, bending modulus and shear strength of the composites at 400 ℃ are 97.6 MPa, 68.5 GPa and 29.9 MPa, respectively.The bending failure is mainly caused by the compressive stress on the inner surface, which leads to press fracture of the warp fiber bundle and the extrusion deformation of the weft fiber bundle. Tensile failure of composites is not obvious with the increase of testing temperature at the outer side tension. Shear failure occurs first in the damage interface of the matrix and fiber bundle, the fiber bundle is pulled out and the fracture surface is not at the same level at room temperature, the fracture of the fiber bundle shows 45° failure at 350, 400 ℃.The buckling of the warp fiber bundle and the extrusion deformation degree of the weft fiber bundle become more and more serious with the increase of the test temperature.

Key words2.5D shallow cross-linked    Cf/Al composites    microstructure    bending property    shear property
收稿日期: 2019-06-05      出版日期: 2020-06-15
中图分类号:  TB331  
基金资助:国家自然科学基金项目(51765045);国家自然科学基金项目(AA201301219);江西省自然科学基金(20151BAB206004);江西省自然科学基金(20171BAB201021)
通讯作者: 余欢     E-mail: yuhwan@163.com
作者简介: 余欢(1960-), 男, 教授, 博士, 研究方向为金属基复合材料, 联系地址:江西省南昌市红谷滩新区丰和南大道696号南昌航空大学轻合金加工科学与技术国防重点学科实验室(330063), E-mail:yuhwan@163.com
引用本文:   
冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
Jing-peng FENG, Huan YU, Zhi-feng XU, Chang-chun CAI, Zhen-jun WANG, Yin-sheng HU, Ya-na WANG. Microstructure, bending and shear properties of 2.5D shallow cross-linked Cf/Al composites. Journal of Materials Engineering, 2020, 48(6): 132-139.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000648      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/132
Fig.1  2.5D浅交直联结构示意图
Fig.2  试样织物单元图
Fiber
type
Monofilament
diameter/μm
Tensile
strength/MPa
Elastic
modulus/GPa
Density/
(g·cm-3)
M40J 5-7 4410 377 1.77
Table 1  M40J纤维性能
Fabric size Volume ratio of warp/% Volume ratio of weft/% Volume fraction/%
250 mm×200 mm×4 mm 75 25 50
Table 2  2.5D浅交直联预制体编织工艺参数
Mg Si Cu Mn Zn Ti Al
9.5-11.0 0.3 0.1 0.15 0.15 0.15 Bal
Table 3  ZL301合金化学成分(质量分数/%)
Fig.3  真空压力浸渗原理示意图[15]
1-lifting and rotating plug;2-cooling water;3-insulation cover;4-heating coil;5-preform;6-digital control and display;7-crucible lifting;8-vacuum pump;9-power supply
Fig.4  2.5D浅交直联Cf/Al复合材料弯曲试样
Fig.5  2.5D浅交直联Cf/Al复合材料剪切试样
Fig.6  2.5D浅交直联Cf/Al复合材料显微组织
(a)经向;(b)纬向
T/℃Bending strength/MPa Modulus/GPa
1 2 3 4 5 Ave Var 1 2 3 4 5 Ave Var
25 265 258 263 274 282 268.4 73.0 75.6 76.1 76.4 73.8 74.3 75.2 1.0
350 140 125 146 145 136 139.0 77.2 72.3 67.4 74.0 70.6 70.1 70.9 4.9
400 103 94 89 102 100 97.6 28.2 66.9 66.6 67.2 70.3 71.7 68.5 4.3
Table 4  2.5D浅交直联Cf/Al复合材料经向弯曲性能
Fig.7  2.5D浅交直联Cf/Al复合材料XRD衍射图谱
Fig.8  2.5D浅交直联Cf/Al复合材料弯曲实验后试样
(a)室温;(b)350 ℃;(c)400 ℃
Fig.9  2.5D浅交直联Cf/Al复合材料弯曲性能实验破损处断口SEM照片
(a)室温;(b)350 ℃;(c)400 ℃
T/℃Shear strength/MPa
1 2 3 4 5 Ave Var
25 39.7 38.4 41.1 44.5 41.2 41.0 4.2
350 48.1 41.3 34.4 34.2 37.8 39.2 26.7
400 33.4 29.2 28.2 29.7 29.1 29.9 3.3
Table 5  2.5D浅交直联Cf/Al复合材料经向剪切性能
Fig.10  2.5D浅交直联Cf/Al复合材料剪切破损处断口SEM照片
(a)室温;(b) 350 ℃;(c)400 ℃
1 ZHANG Y H , WU G H . Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (11): 2148- 2151.
doi: 10.1016/S1003-6326(09)60433-7
2 GAO Y , LI J L . Effects of fiber volume fraction on damping properties of three-dimensional and five-directional braided composites[J]. Journal of Donghua University(English Edition), 2015, 32 (3): 458- 465.
3 LI D G , CHEN G Q , JIANG L T , et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites[J]. Materials Science & Engineering: A, 2013, 586 (1): 330- 337.
4 刘谦, 李嘉禄, 李学明. 三维编织复合材料的弯曲和压缩性能探讨研究[J]. 材料工程, 2000, (8): 3- 6.
doi: 10.3969/j.issn.1001-4381.2000.08.001
4 LIU Q , LI J L , LI X M . Research of bending and compression properties of 3 d braided composite materials[J]. Journal of Materials Engineering, 2000, (8): 3- 6.
doi: 10.3969/j.issn.1001-4381.2000.08.001
5 严实, 郭留雨, 赵金阳, 等. 三维五向编织复合材料低速冲击及冲击后压缩性能实验研究[J]. 材料工程, 2017, 45 (12): 65- 70.
doi: 10.11868/j.issn.1001-4381.2015.000861
5 YAN S , GUO L Y , ZHAO J Y , et al. Experimental investigation on low-velocity impact and compression after impact properties of three-dimensional five-directional braided composites[J]. Journal of Materials Engineering, 2017, 45 (12): 65- 70.
doi: 10.11868/j.issn.1001-4381.2015.000861
6 双超, 刘璐璐, 赵振华, 等. 湿热老化后碳纤维复合材料层间剪切强度实验方法对比研究[J]. 航空材料学报, 2017, 37 (5): 94- 102.
6 SHUANG C , LIU L L , ZHAO Z H , et al. Comparison study on interlaminar shear strength testing methods of CFRP under hygrothermal aging conditions[J]. Journal of Aeronautical Materials, 2017, 37 (5): 94- 102.
7 马晓康, 殷小玮, 范晓孟, 等. 碳化硅陶瓷基复合材料的自愈合及结构吸波一体化研究进展[J]. 航空材料学报, 2018, 38 (5): 1- 9.
7 MA X K , YIN X W , FAN X M , et al. Progress on self-healing and structure-wave absorbing integration of silicon carbide ceramic matrix composites[J]. Journal of Aeronautical Materials, 2018, 38 (5): 1- 9.
8 王涛, 赵宇新, 付书红, 等. 连续纤维增强金属基复合材料的研制进展及关键问题[J]. 航空材料学报, 2013, 33 (2): 87- 96.
doi: 10.3969/j.issn.1001-4381.2013.02.018
8 WANG T , ZHAO Y X , FU S H , et al. Progress and key problems in research and fabrication of fiber reinforced metal matrix composite[J]. Journal of Aeronautical Materials, 2013, 33 (2): 87- 96.
doi: 10.3969/j.issn.1001-4381.2013.02.018
9 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31 (5): 914- 927.
9 WANG X M , XING Y F . Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31 (5): 914- 927.
10 韩振宇, 梅海洋, 付云忠, 等. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46 (11): 25- 36.
doi: 10.11868/j.issn.1001-4381.2017.000682
10 HAN Z Y , MEI H Y , FU Y Z , et al. Research progress on preform forming and microstructure of 3D braided composites[J]. Journal of Materials Engineering, 2018, 46 (11): 25- 36.
doi: 10.11868/j.issn.1001-4381.2017.000682
11 ZHANG Y H , YAN L L , MIAO M H , et al. Microstructure and mechanical properties of z-pinned carbon fibrereinforced aluminum alloy composites[J]. Materials & Design, 2015, 86, 872- 877.
12 MA Y Q , QI L H , ZHANG T , et al. Study on defects of 2D-Cf/Al composite prepared by liquid-solid extrusion following vacuum infiltration technique[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88 (1/4): 89- 96.
13 王一博, 刘振国, 胡龙, 等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术, 2017, (19): 78- 85.
13 WANG Y B , LIU Z G , HU L , et al. Recent advancements of 3D braided composite and its applications in aerospace[J]. Aeronautical Manufacturing Technology, 2017, (19): 78- 85.
14 胡银生, 余欢, 王振军, 等. 织物结构对2.5D-Cf/Al复合材料微观组织与力学性能的影响[J]. 中国有色金属学报, 2018, 28 (12): 2512- 2522.
14 HU Y S , YU H , WANG Z J , et al. Effects of woven fabric structure on microstructure and mechanical properties of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (12): 2512- 2522.
15 聂明明, 徐志锋, 余欢, 等. 真空气压浸渗3D-Cf/Al复合材料微观缺陷分析[J]. 稀有金属材料与工程, 2018, 47 (4): 1266- 1274.
15 NIE M M , XU Z F , YE H , et al. Micro-defects of 3D-Cf/Al composites by vacuum pressure infiltration[J]. Rare Metal Materials and Engineering, 2018, 47 (4): 1266- 1274.
16 TROJANOVA Z , LUKACP , RIEHEMANN W , et al. Study of relaxation of residual internal stress in Mg composites by internal friction[J]. Materials Science & Engineering, 2002, 324 (1/2): 122- 126.
17 董敬涛.织物结构对2.5D-Cf/Al复合材料组织与力学性能的影响研究[D].南昌: 南昌航空大学, 2017.
17 DONG J T. Research on the effect of woven fabric structure on microstructure and mechanical properties of 2.5D-Cf/Al composites [D]. Nanchang: Nanchang Hangkong University, 2017.
18 武高辉, 姜龙涛, 陈国钦, 等. 金属基复合材料界面反应控制研究进展[J]. 中国材料进展, 2012, 31 (7): 51- 58.
18 WU G H , JIANG L T , CHEN G Q , et al. Research progress on the control of interfacial reactions in metal matrix composites[J]. Materials China, 2012, 31 (7): 51- 58.
19 聂明明, 徐志锋, 徐燕杰, 等. 基体合金对连续SiCf/Al复合材料界面及拉伸强度的影响[J]. 中国有色金属学报, 2016, 26 (3): 593- 601.
19 NIE M M , XU Z F , XU Y J , et al. Effect of matrix alloy on interface and tensile strength of continuous SiCf/Al composite[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (3): 593- 601.
20 王振军, 朱世学, 余欢, 等. 预热温度对Cf/Al复合材料微观组织及室温与高温力学性能的影响[J]. 稀有金属材料与工程, 2018, 47 (3): 982- 989.
20 WANG Z J , ZHU S X , YU H , et al. Effect of fabrication temperature on microstructure and mechanical properties of Cf/Al composites at room and elevated temperature[J]. Rare Metal Materials and Engineering, 2018, 47 (3): 982- 989.
[1] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[2] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[3] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[4] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[5] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[6] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[7] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[8] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[9] 杨晓琨, 熊柏青, 李锡武, 闫丽珍, 李志辉, 张永安, 李亚楠, 温凯. Li含量对Al-Mg-Si合金时效析出行为的影响[J]. 材料工程, 2021, 49(6): 100-108.
[10] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
[11] 甘致聪, 王硕, 山圣峰, 张兵, 贾元智, 马明臻. 微量硼对Ti-Fe-Cu-Sn-Nb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162.
[12] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[13] 吴桢, 陆政, 刘闪光, 罗传彪. 微量Ag对ZL114A铝合金组织和力学性能的影响[J]. 材料工程, 2021, 49(1): 82-88.
[14] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[15] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn