Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (8): 126-133    DOI: 10.11868/j.issn.1001-4381.2019.000650
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响
刘欢1, 张瑞英1,2,*(), 李金轩1, 杨森1, 闫晗1
1 内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051
2 内蒙古工业大学 内蒙古轻合金重点实验室, 呼和浩特 010051
Effect of TiO2 particle size on microstructure and refining effect of Al-TiO2-C refiner
Huan LIU1, Rui-ying ZHANG1,2,*(), Jin-xuan LI1, Sen YANG1, Han YAN1
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Light Metal Materials, Inner Mongolia University of Technology, Hohhot 010051, China
全文: PDF(6724 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以Al粉,TiO2粉,C粉为原料,通过放热弥散法制备Al-TiO2-C细化剂,其中TiO2的粒径分别为30,60,90,200 nm。研究TiO2的粒径对细化剂组织的影响以及不同细化剂对工业纯铝的细化效果。利用XRD,SEM,EDS技术表征不同TiO2粒径制备的Al-TiO2-C细化剂相组成和显微组织。结果表明:Al-TiO2-C细化剂主要由Al3Ti,TiC和Al2O3相组成。TiO2粒径的变化会直接影响第二相的数量、分布与形貌,当TiO2粒径为30~90 nm时,Al-TiO2-C细化剂中Al3Ti和TiC数量多但有明显的偏聚现象,分布不均匀,其中Al3Ti相呈长条状。当TiO2粒径为200 nm时,第二相分布均匀但数量较少,其中Al3Ti相呈块状。添加30 nm TiO2制备的Al-TiO2-C细化剂后,α-Al形核温度由659.4℃上升到661.8℃,再辉温度由1.2℃下降到0.3℃,平均晶粒尺寸最小为633 μm,细化效果最佳。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘欢
张瑞英
李金轩
杨森
闫晗
关键词 Al-TiO2-C细化剂TiO2粒径热分析工业纯铝    
Abstract

The Al-TiO2-C refiners were prepared by the in-situ exothermic dispersion method using Al, TiO2 and C powders. The particle sizes of TiO2 were 30, 60, 90 nm and 200 nm, respectively. The effects of particle size of TiO2 on the refiner microstructure were studied. The refinement effect on industrial pure aluminum was evaluated. The XRD, SEM and EDS techniques were used to characterize the phase composition and the microstructure of Al-TiO2-C refiners. The results show that the Al-TiO2-C refiners compose of Al3Ti, TiC and Al2O3.The particle size of TiO2 directly affects the amount, distribution and morphology of the second phase. When the particle size of TiO2 is 30-90 nm, the amount of Al3Ti and TiC is large. However, the segregation phenomenon is obviously observed. The distribution of particles is not uniform. The Al3Ti is lath-like. When the particle size of TiO2 is 200 nm, the distribution of second phases is uniform and the amount is small. The Al3Ti is blocky. After adding the Al-TiO2-C refiner prepared by 30 nm TiO2, the nucleation temperature of α-Al increases from 659.4 ℃ to 661.8 ℃.Re-heating temperature is dropped from 1.2 ℃ to 0.3 ℃.The minimum average grain size is 633 μm. The refinement effect is the best in this condition.

Key wordsAl-TiO2-C refiner    TiO2 particle size    thermal analysis    industrial pure aluminum
收稿日期: 2019-07-12      出版日期: 2020-08-15
中图分类号:  TB331  
基金资助:内蒙古自治区自然科学基金项目(2017MS(LH)0509)
通讯作者: 张瑞英     E-mail: zhang_ruiying@126.com
作者简介: 张瑞英(1972-), 女, 副教授, 博士, 主要从事铝合金及金属基复合材料的研究, 联系地址:内蒙古自治区呼和浩特市新城区爱民街49号内蒙古工业大学材料科学与工程学院(010051), E-mail:zhang_ruiying@126.com
引用本文:   
刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
Huan LIU, Rui-ying ZHANG, Jin-xuan LI, Sen YANG, Han YAN. Effect of TiO2 particle size on microstructure and refining effect of Al-TiO2-C refiner. Journal of Materials Engineering, 2020, 48(8): 126-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000650      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/126
Material Purity/% Particle size/μm
Al powder 99.9 40-50
C powder 99.9 30-95
TiO2 powder 99.9
Table 1  实验原料的纯度与粒径
Fig.1  不同粒径的TiO2制备的Al-TiO2-C细化剂微观组织
(a)30 nm; (b)60 nm; (c)90 nm; (d)200 nm
Fig.2  不同粒径的TiO2制备的Al-TiO2-C细化剂的XRD图谱
(a)30 nm; (b)200 nm
Fig.3  30 nmTiO2制备的细化剂面扫描分析
(a)SEM;(b)Al元素;(c)C元素;(d)O元素;(e)Ti元素[
Fig.4  不同细化剂的外形
(a), (b)30 nm; (c), (d)200 nm
Fig.5  添加不同细化剂的工业纯铝的宏观组织
(a)工业纯铝;(b)30 nm;(c)60 nm;(d)90 nm;(e)200 nm
Fig.6  添加不同细化剂后工业纯铝的冷却曲线(a)及其特征值(b)
Fig.7  不同保温时间下Al-TiO2-C(1)与Al-5Ti-B(2)的细化效果
(a)15 min; (b)30 min; (c)60 min; (d)90 min
Fig.8  添加不同细化剂后不同保温时间下工业纯铝的平均晶粒尺寸
1 王鹏, 张瑞英, 韩小伟, 等. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46 (8): 84- 90.
1 WANG P , ZHANG R Y , HAN X W , et al. Effect of Al-TiO2-C refiners prepared by different compacting pressures on refinement performance of ZL101 alloy[J]. Journal of Materials Engineering, 2018, 46 (8): 84- 90.
2 张国君, 武玉英, 杨化冰, 等. 抗Zr"中毒"Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45 (4): 1- 8.
2 ZHANG G J , WU Y Y , YANG H B , et al. Influence of anti Zr-poisoning Al-Ti-B-C master alloy on mechanical properties of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (4): 1- 8.
3 LI P T , TIAN W J , WANG D , et al. Grain refining potency of LaB6 on aluminum alloy[J]. Journal of Rare Earths, 2012, 30 (11): 1172- 1176.
doi: 10.1016/S1002-0721(12)60200-2
4 ZHAO H L , YONG S , MIAO L , et al. Grain refining efficiency and microstructure of Al-Ti-C-RE master alloy[J]. Journal of Alloys and Compounds, 2010, 508 (1): 206- 211.
5 FAN Z , WANG Y , ZHANG Y , et al. Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Materialia, 2015, 84, 292- 304.
6 ZHOU L , GAO F , PENG G S , et al. Effect of potent TiB2 addition levels and impurities on the grain refinement of Al[J]. Journal of Alloys and Compounds, 2016, 689, 401- 407.
7 ZHANG L L , ZHENG Q J , JIANG H X , et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al[J]. Scripta Materialia, 2019, 160, 25- 28.
8 肖政兵, 邓运来, 唐建国, 等. Al-Ti-C与Al-Ti-B晶粒细化剂的Zr中毒机理[J]. 中国有色金属学报, 2012, 22 (2): 371- 378.
8 XIAO Z B , DENG Y L , TANG J G , et al. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B[J]. The Chinese Journal of Nonferrous Metals, 2012, 22 (2): 371- 378.
9 黄元春, 杜志勇, 肖政兵, 等. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43 (12): 75- 80.
9 HUANG Y C , DU Z Y , XIAO Z B , et al. Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (12): 75- 80.
10 BIROL Y . Grain refining efficiency of Al-Ti-C alloys[J]. Journal of Alloys and Compounds, 2006, 422 (1): 128- 131.
11 ZHAO B Y , CAI Q Z , LI X W , et al. Effect of TiC nano particles supported by Ti powders on the solidification behavior and microstructure of pure aluminum[J]. Metals and Materials International, 2018, 24 (5): 945- 954.
12 张瑞英, 史志铭, 李红霞. 碳对接触反应法制备TiC-Al2O3p/Al复合材料组织的影响[J]. 材料热处理学报, 2009, 30 (5): 30- 34.
12 ZHANG R Y , SHI Z M , LI H X . Effect of carbon on microstructure of TiC-Al2O3p/Al composites prepared by contact reaction technique[J]. Transactions of Materials and Heat Treatment, 2009, 30 (5): 30- 34.
13 SETOUDEH N , WELHAM N J . Effect of carbon on mechanically induced self-sustaining reactions (MSR) in TiO2-Al-C mixtures[J]. Journal of Refractory Metals and Hard Materials, 2016, 54, 210- 215.
14 ELMAHALLAWI I , ABDELKADER H , YOUSEF L , et al. Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al-Si hypoeutectic alloys[J]. Materials Science and Engineering:A, 2012, 556, 76- 87.
15 CHAO Z L , ZHANG L C , JIANG L T , et al. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system[J]. Journal of Alloys and Compounds, 2019, 775, 290- 297.
16 ZHU H G , JIANG Y L , YAO Q Q , et al. Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures[J]. Materials Chemistry and Physics, 2012, 137 (2): 532- 542.
17 LIANG Y H , SHI Z M , LI G W , et al. Effects of Er addition on the crystallization characteristic and microstructure of Al-2wt%Fe cast alloy[J]. Journal of Alloys and Compounds, 2019, 781, 235- 244.
18 FARAHANY S , OURDJINI A , IDRSI M H , et al. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al-Si-Cu alloy(ADC12) by in situ thermal analysis[J]. Thermochimica Acta, 2013, 559, 59- 68.
19 BIROL Y . Efficiency of binary and ternary alloys from Al-Ti-B system in grain refining aluminum foundry alloys[J]. International Journal of Cast Metals Research, 2013, 26 (5): 283- 288.
doi: 10.1179/1743133613Y.0000000064
20 BIROL Y . Design of potent grain refiners for wrought aluminum alloys[J]. International Journal of Cast Metals Research, 2013, 26 (5): 273- 278.
doi: 10.1179/1743133613y.0000000060
21 DONG X X , ZHANG Y J , JI S X . Enhancement of mechanical properties in high silicon gravity cast AlSi9Mg alloy refined by Al3Ti3B master alloy[J]. Materials Science and Engineering:A, 2017, 700, 291- 300.
[1] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[2] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[3] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[4] 臧充光, 陈华华, 胡洋成. RDP与APP/MC/PPO复配膨胀阻燃聚乙烯的研究[J]. 材料工程, 2014, 0(12): 44-49.
[5] 魏化震, 张清辉, 李锦文. 玄武岩纤维增强酚醛树脂复合材料高温热分析研究[J]. 材料工程, 2013, 0(1): 64-67,84.
[6] 吕小博, 魏云鹤, 于萍, 慕春玲, 张长桥. 稠油降黏聚合物功能材料的合成与降黏性能研究[J]. 材料工程, 2012, 0(11): 52-56.
[7] 果晶晶, 郝华强, 杨晓江, 刘增勋, 王书桓. FTSC薄板坯连铸结晶器内的热/力行为研究[J]. 材料工程, 2010, 0(3): 70-73.
[8] 齐峰, 樊自拴, 孙冬柏, 孟惠民, 俞宏英, 王旭东, 李辉勤. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备[J]. 材料工程, 2006, 0(7): 14-18.
[9] 乌云其其格, 廖子龙. 3233树脂性能研究[J]. 材料工程, 2005, 0(6): 24-26.
[10] 王戈, 李效东, 李公义, 唐云, 张凌寒. 聚合物材料与液氧相容性的表征研究[J]. 材料工程, 2005, 0(11): 38-42,49.
[11] 乔小晶, 于仁光, 任慧, 王长福. 插层炭纤维与镀铜炭纤维的性能比较[J]. 材料工程, 2004, 0(7): 47-50.
[12] 金燕苹, 顾明元, 施忠良. 非连续增强Zn-23Al-2Cu基复合材料的DSC研究[J]. 材料工程, 2000, 0(2): 22-24.
[13] 苏正涛, 刘君, 孔毅, 王洪锐. 氟硅氧烷—二甲基硅氧烷共聚物低温性能的研究[J]. 材料工程, 1999, 0(5): 27-28,31.
[14] 尹荔松, 危韧勇, 周歧发, 张进修. Sb2O3阻燃超细粉的制备和阻燃特性研究[J]. 材料工程, 1999, 0(12): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn