Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 123-132    DOI: 10.11868/j.issn.1001-4381.2019.000659
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
晶界工程处理对Inconel 690TT合金微动磨损行为的影响
韩永明1, 韩俊玲1, 辛龙1, 刘廷光1, 陆永浩1, 庄子哲雄1,2
1. 北京科技大学 国家材料服役安全科学中心, 北京 100083;
2. 东北大学(日本) 未来科学技术共同研究中心, 日本 仙台 980-8579
Effects of grain boundary engineering treatment on fretting wear behavior of Inconel 690TT alloy
HAN Yong-ming1, HAN Jun-ling1, XIN Long1, LIU Ting-guang1, LU Yong-hao1, SHOJI Tetsuo1,2
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
2. New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
全文: PDF(8844 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热处理加冷轧的晶界工程处理,利用OM,SEM,EBSD和白光干涉仪等研究Inconel 690TT合金在室温与320℃空气中的微动磨损行为。结果表明:经5%冷轧变形及高温短时间退火处理后Inconel 690TT合金的显微组织中低∑重位点阵(CSL)晶界比例达到70%以上;Inconel 690TT合金试样在室温和320℃下的微动磨损体积与摩擦因数均随硬度增加而降低,随晶粒尺寸和低∑CSL晶界比例增加而增大;在相同微动实验参数下,晶粒尺寸越大、低∑CSL晶界比例越高试样的微动运动区域特性倾向于完全滑移,反之倾向于部分滑移;与晶粒尺寸相比,低∑CSL晶界比例对晶界工程处理试样的微动磨损抗力的影响更强,低∑CSL晶界比例越高材料的抗微动磨损能力越差,晶界工程处理不利于提高材料的微动磨损抗力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩永明
韩俊玲
辛龙
刘廷光
陆永浩
庄子哲雄
关键词 Inconel 690TT合金晶界工程微动磨损低&sumCSL晶界晶粒尺寸    
Abstract:The grain boundary engineering (GBE) treatment of heat treatment and cold rolling was adopted.The fretting wear behavior of Inconel 690TT alloy in air at room temperature and 320 ℃ was studied by OM, SEM, EBSD and white light interferometer. The results show that the proportion of low-∑ CSL boundaries of the best GBE sample is more than 70%, which is produced after 5% cold rolling,high temperature and short time annealing. The wear volumes and friction coefficients of the Inconel 690TT alloy samples at room temperature and 320 ℃ decrease with the increase of hardness and increase with the increase of grain size and low-∑ CSL boundary fraction. The fretting zone characteristic of Inconel 690TT alloy samples with larger grain sizes and higher proportion of low-∑ CSL boundaries under the same fretting experimental parameters is prone to full sliding, whereas it tends to partial sliding. Compared with grain size, the low-∑ CSL boundary fraction plays a more important role in determining the fretting behavior of GBE samples. The sample with higher fraction of low-∑ CSL boundaries has lower resistance to fretting wear, so GBE treatment is inimical to improving the fretting wear resistance of materials.
Key wordsInconel 690TT alloy    grain boundary engineering    fretting wear    low-&sum    CSL boundary    grain size
收稿日期: 2019-07-15      出版日期: 2020-10-17
中图分类号:  TH117.1  
通讯作者: 刘廷光(1986-),男,副研究员,博士,研究方向为金属材料失效与晶界强化,联系地址:北京市昌平区昆仑路12号北京科技大学国家材料服役安全科学中心(102206),E-mail:tgliu@ustb.edu.cn     E-mail: tgliu@ustb.edu.cn
引用本文:   
韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
HAN Yong-ming, HAN Jun-ling, XIN Long, LIU Ting-guang, LU Yong-hao, SHOJI Tetsuo. Effects of grain boundary engineering treatment on fretting wear behavior of Inconel 690TT alloy. Journal of Materials Engineering, 2020, 48(10): 123-132.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000659      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/123
[1] ZINKLE S J,WAS G S.Materials challenges in nuclear energy[J].Acta Materialia,2013,61(3):735-758.
[2] 张兴田.核电厂设备典型腐蚀损伤及其防护技术[J].腐蚀与防护,2016,37(7):527-533. ZHANG X T.Corrosion damage cases and corrosion protection technology of components in nuclear power plant[J].Corrosion & Protection,2016,37(7):527-533.
[3] 唐辉.世界核电设备与结构将长期面临的一个问题——微动损伤[J].核动力工程,2000,21(3):221-226. TANG H.Fretting damage,one of world-wide difficulties in the field of nuclear power equipment and structures for a long-term[J].Nuclear Power Engineering,2000,21(3):221-226.
[4] WATANABE T.An approach to grain boundary design of strong and ductile polycrystals[J].Res Mechanica,1984,11(1):47-84.
[5] LEHOCKEY E M,LIMOGES D,PALUMBO G,et al.On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering[J].Journal of Power Sources,1999,78(1/2):79-83.
[6] LIU T, XIA S,SHOJI T,et al The topology of three-dimensional grain boundary network and its influence on stress corrosion crack propagation characteristics in austenitic stainless steel in a simulated BWR environment[J].Corrosion Science,2017,129:161-168.
[7] HU C,XIA S,LI H,et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J].Corrosion Science,2011,53(5):1880-1886.
[8] LIU T,XIA S,BAI Q,et al.Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water[J].Journal of Nuclear Materials,2018,498:290-299.
[9] TELANG A,GILL A S,KUMAR M,et al.Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking[J].Acta Materialia,2016,113:180-193.
[10] LIU T, XIA S, BAI Q, et al. Evaluation of grain boundary network and improvement of intergranular cracking resistance in 316L stainless steel after grain boundary engineering[J].Materials,2019,12(2):242.
[11] MICHIUCHI M,KOKAWA H,WANG Z J,et al.Twin-induced grain boundary engineering for 316 austenitic stainless steel[J].Acta Materialia,2006,54(19):5179-5184.
[12] XIN L,YANG B B,WANG Z H,et al.Effect of normal force on fretting wear behavior and mechanism of alloy 690TT in high temperature water[J].Wear,2016,210:368-369.
[13] PARK G S,KIM G G,KIM S J.Sliding wear behaviors of steam generator tube materials in high temperature water environment[J].Journal of Nuclear Materials,2006,352(1/3):80-84.
[14] HONG J K,KIM I S,PARK C Y,et al.Microstructural effects on the fretting wear of Inconel 690 steam generator tube[J].Wear, 2005,259(1):349-355.
[15] YUN J Y,SHIN G S,KIM D I,et al.Effect of carbide size and spacing on the fretting wear behavior of Inconel 690 SG tube mated with SUS 409[J].Wear,2015,338/339:252-257.
[16] LI J,LU Y,ZHANG H,et al.Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys[J].Tribology International,2015,81:215-222.
[17] 李慧,夏爽,周邦新,等.镍基690合金时效过程中晶界碳化物的形貌演化[J].金属学报,2009,45(2):195-198. LI H,XIA S,ZHOU B X,et al.Evolution of carbide morphology precipitated at grain boundaries in Ni-based alloy 690[J].Acta Metallurgica Sinica,2009,45(2):195-198.
[18] LIU T,XIA S,LI H,et al.The highly twinned grain boundary network formation during grain boundary engineering[J].Materials Letters,2014,133:97-100.
[19] ZHUO Z,XIA S,BAI Q,et al.The effect of grain boundary character distribution on the mechanical properties at different strain rates of a 316L stainless steel[J].Journal of Materials Science,2018,53(4):2844-2858.
[20] VARENBERG M,HALPERIN G,ETSION I.Different aspects of the role of wear debris in fretting wear[J].Wear,2002,252(11/12):902-910.
[21] 辛龙,李杰,陆永浩,等.Inconel 690合金高温微动磨损特性研究[J].摩擦学学报,2015,35(4):470-476. XIN L,LI J,LU Y H,et al.Fretting wear properties of Inconel 690 alloy at elevated temperature[J].Tribology,2015,35(4):470-476.
[22] ZHU M H,ZHOU Z R.On the mechanisms of various fretting wear modes[J].Tribology International,2011,44(11):1378-1388.
[23] HONG J K,KIM I S.Environment effects on the reciprocating wear of Inconel 690 steam generator tubes[J].Wear,2003,255(7/12):1174-1182.
[24] 辛龙,马妙,陆永浩.Inconel600合金高温微动磨损特性[J].工程科学学报,2015,37(7):928-935. XIN L,MA M,LU Y H.Fretting wear properties of Inconel600 alloy at high temperature[J].Chinese Journal of Engineering,2015,37(7):928-935.
[25] 屈盛官,王光宏,李文龙,等.高性能渗氮钢微动磨损性能研究[J].摩擦学学报,2012,32(5):486-492. QU S G,WANG G H,LI W L,et al.Fretting wear of a high-performance plasma nitrided steel[J].Tribology,2012,32(5):486-492.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[3] 张斌, 陈岁元, 梁京, 刘常升, 崔彤, 王玫. 短应力线轧机激光再制造现状及发展趋势[J]. 材料工程, 2019, 47(11): 43-52.
[4] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[5] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[6] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[7] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[8] 麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
[9] 伍灿, 沈火明, 邓莎莎, 刘娟, 彭金方. 5083铝合金扭动微动磨损实验研究[J]. 材料工程, 2016, 44(4): 71-75.
[10] 黎敏, 周通, 王善超, 肖会芳, 徐金梧. 基于频谱能量的材料晶粒尺寸表征方法[J]. 材料工程, 2015, 43(12): 69-74.
[11] 乔志霞, 李连进, 宁保群. 奥氏体化条件对675装甲钢中马氏体相变的影响[J]. 材料工程, 2014, 0(7): 5-9.
[12] 左孔成, 蔡振兵, 宋川, 彭金方, 莫继良, 沈火明, 朱旻昊. 纤维取向对炭纤维织物复合材料扭动微动摩擦学性能的影响[J]. 材料工程, 2014, 0(4): 79-84.
[13] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
[14] 顾和根, 蔡振兵, 岳文, 彭金方, 朱旻昊. 车轴钢表面渗氮/渗硫复合层的扭动微动磨损研究[J]. 材料工程, 2013, 0(7): 66-72.
[15] 李萍, 程向梅, 李安娜, 唐子乔. 304不锈钢固溶产物晶粒尺寸的超声无损表征研究[J]. 材料工程, 2013, 0(6): 77-81,86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn