Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 157-162    DOI: 10.11868/j.issn.1001-4381.2019.000660
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响
陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希
西安电子科技大学 先进材料与纳米科技学院, 西安 710071
Influence of Mg2+ doping on properties of Li1.2Mn0.6Ni0.2O2 cathode materials
CHEN De-xin, LI Zhi-min, LI Gao-feng, ZHANG Mao-lin, ZHANG Dong-yan, YAN Yang-xi
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
全文: PDF(2494 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用燃烧合成法,制备Mg2+掺杂的锂离子电池正极材料Li1.2Mn0.6Ni0.2O2。通过X射线衍射仪、拉曼光谱、扫描电子显微镜对所制备样品分别进行物相结构和形貌表征,并测试其电化学性能。结果表明:所制备样品具有良好的六方层状结构,粉体呈类球形形貌。通过Mg2+掺杂,能够有效提高Li1.2Mn0.6Ni0.2O2材料的首次库仑效率、循环稳定性和高倍率容量。当Mg2+掺杂量为0.02时,电池样品表现出良好的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈德鑫
李智敏
李高锋
张茂林
张东岩
闫养希
关键词 锂离子电池富锂正极材料燃烧合成掺杂电化学性能    
Abstract:Lithium-ion battery cathode materials of Mg doped Li1.2Mn0.6Ni0.2O2 were prepared by combustion synthesis. The phase structures and morphologies of the as-prepared samples were characterized by X-ray diffractometer, Raman spectroscopy and scanning electron microscope, respectively, and their electrochemical performance was measured. Results show that the as-prepared samples have better hexagonal layered structure, with spherical-like appearance. Through Mg2+ doping, the initial coulombic efficiency, cyclic stability and rate capacity are efficiently enhanced for the Li1.2Mn0.6Ni0.2O2 material. When the Mg2+ content is 0.02, the battery sample exhibits excellent electrochemical performance.
Key wordslithium ion battery    Li-rich cathode material    combustion synthesis    doping    electrochemical performance
收稿日期: 2019-07-15      出版日期: 2020-10-17
中图分类号:  TB34  
通讯作者: 李智敏(1976-),男,教授,博士,主要从事电子功能材料与器件的研究,联系地址:陕西省西安市太白南路2号西安电子科技大学(710071),E-mail:lizhmin@163.com     E-mail: lizhmin@163.com
引用本文:   
陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
CHEN De-xin, LI Zhi-min, LI Gao-feng, ZHANG Mao-lin, ZHANG Dong-yan, YAN Yang-xi. Influence of Mg2+ doping on properties of Li1.2Mn0.6Ni0.2O2 cathode materials. Journal of Materials Engineering, 2020, 48(10): 157-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000660      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/157
[1] 董鹏,张英杰,刘嘉铭,等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11):49-57. DOND P, ZHANG Y J, LIU J M, et al. Fabrication and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[2] CROY J R, ABOUIMRANE A, ZHANG Z. Next-generation lithium-ion batteries:the promise of near-term advancements[J]. Mrs Bulletin, 2014, 39(5):407-415.
[3] ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials:an automotive industry perspective[J]. Journal of Materials Chemistry:A, 2015, 3(13):6709-6732.
[4] MENG X B, YANG X Q, SUN X L. Emerging applications of atomic layer deposition for lithium-ion battery studies[J]. Advanced Materials, 2012, 24(27):3589-3615.
[5] LI Y, BAI Y, BI X, et al. An effectively activated hierarchical nano-microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries[J]. Chemsuschem, 2016, 9(7):728-735.
[6] HOSONO E, SAITO T, HOSHINO J, et al. Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning[J]. Crystengcomm, 2013, 15(14):2592-2597.
[7] SUN Y, LEE M J, YOON C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9):1192-1196.
[8] LIU B, ZHANG Q, HE S C, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4[J]. Electrochimica Acta, 2011, 56(19):6748-6751.
[9] LI J F, ZHAN C, LU J, et al. Improve first-cycle efficiency and rate performance of layered-layered Li1.2Mn0.6Ni0.2O2 using oxygen stabilizing dopant[J]. 2015, 7(29):16040-16045.
[10] ZANG Y, DING C X, WANG X C, et al. Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance[J]. Electrochimica Acta, 2016, 6(36):30194-30198.
[11] HE Z, WANG Z, CHEN H, et al. Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54 Ni0.13Co0.13O2 oxide with porous hollow structure[J]. Journal of Power Sources, 2015, 299:334-341.
[12] ZHOU L, LI J, HUANG L S, et al. Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance[J]. Journal of Solid State Electrochemistry, 2017, 21(12):3467-3477.
[13] LI Q, LI G S, FU C C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2:a novel cathode material with an enhanced cycling stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10330-10341.
[14] WANG D, HUANG Y, HUO Z Q, et al. Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material[J]. Electrochimica Acta, 2013, 107:461-466.
[15] YAN W W, LIU Y N, GUO S W, et al. Effect of defects on decay of voltage and capacity for Li[Li0.15Ni0.2Mn0.6]O2 cathode material[J]. ACS Applied Materials & Interfaces, 2016, 8(19):12118-12126.
[16] JIN X, XU Q J, LIU H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136:19-26.
[17] SHOJAN J, CHITTURI V R, SOLER J, et al. High energy xLi2MnO3-(1-x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries[J]. Journal of Power Sources, 2015, 274:440-450.
[18] ZHANG L Q, TAKADA K, OHTA N, et al. Layered (1-x-y)LiNi1/2Mn1/2O2·xLi[Li1/3Mn2/3O2yLiCoO2 (0≤ x=y ≤ 0.3 and x+y=0.5) cathode materials[J]. Journal of Electrochemical Society, 2005,152(1):A171-A178.
[19] NAYAK P K, GRINCLAT J, LEVI M, et al. Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2015, 19(9):2781-2792.
[20] OH P, MYEONG S, CHO W, et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials[J]. Nano Letters, 2014, 14(10):5965-5972.
[21] LIU C, WANG Z Y, SHI C S, et al. Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries[J]. 2014, 6(11):8363-8368.
[1] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[4] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[5] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[6] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[7] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[8] 李忠裕, 李云同, 吴雯倩, 刘玲, 彭超华, 袁丛辉, 戴李宗. 磷掺杂中空碳球的制备及其电容性能[J]. 材料工程, 2020, 48(3): 105-111.
[9] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[10] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[11] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[12] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[13] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[14] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[15] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn