Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 108-115    DOI: 10.11868/j.issn.1001-4381.2019.000665
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理
张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华
三峡大学 水电机械设备设计与维护湖北省重点实验室, 湖北 宜昌 443002
Tensile behavior and plastic deformation mechanism of SiCp/AZ91D magnesium matrix nanocomposites at room temperature
ZHANG Cong-yang, LI Zhi-rui, FANG dong, YE Yong-sheng, YE Xi-cong, WU Hai-hua
Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, Hubei, China
全文: PDF(3153 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为得到高强度和高塑性的镁基复合材料,通过高能超声分散法和金属型重力铸造工艺制备了SiC纳米颗粒分散均匀的SiCp/AZ91D镁基纳米复合材料,并进行T4固溶热处理和室温拉伸。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对试样拉伸后的显微组织和塑性变形机理进行观察与研究。结果表明:T4态SiCp/AZ91D镁基纳米复合材料室温下抗拉强度达到296 MPa,伸长率达到17.3%。经室温拉伸变形后复合材料基体微观组织中出现了大量的孪晶和滑移,孪生和滑移是复合材料塑形变形的主要机制。在室温拉伸过程中,α-Mg基体中SiC纳米颗粒周围形成高应变场,高应变场内形成大量位错和堆垛层错,这些位错和堆垛层错在拉伸应变的作用下演变成大量的滑移带和孪晶,这是SiCp/AZ91D镁基纳米复合材料在室温下具有高塑性的微观塑性变形机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张从阳
李志锐
方东
叶永盛
叶喜葱
吴海华
关键词 镁基纳米复合材料拉伸孪生滑移塑性变形机理    
Abstract:To obtain magnesium matrix composites with high strength and high plasticity, SiCp/AZ91D magnesium matrix nanocomposites with uniform dispersion of SiC nanoparticles were prepared by high intensity ultrasonic dispersion method and metal mold gravity casting process, following by T4 solution heat treatment and the tensile test at room temperature. The microstructure and plastic deformation mechanism of the specimen after tensile test were investigated by scanning electron microscope and transmission electron microscope. The results show that the tensile strength and elongation of nanocomposites reach up to 296 MPa and 17.3% at room temperature, respectively. A large number of twins and slip are observed in SiCp/AZ91D magnesium matrix nanocomposites with T4 state after tensile deformation at room temperature. It is obvious that twinning and slip are the main mechanisms of plastic deformation in the nanocomposites.High strain zones are formed around SiC nanoparticles in the α-Mg matrix during the tensile process at room temperature, and a lot of dislocations and stacking faults are formed in the high strain zones. These dislocations and stacking faults are evolved into a large number of slip bands and twins under the action of tensile strain, which is the plastic deformation mechanism of SiCp/AZ91D magnesium matrix nanocomposites with high plasticity at room temperature.
Key wordsmagnesium matrix nanocomposites    tensile    twinning    slip    plastic deformation mechanism
收稿日期: 2019-07-18      出版日期: 2020-04-23
中图分类号:  TB331  
通讯作者: 张从阳(1980-),男,副教授,博士,主要从事金属基纳米复合材料的研究,联系地址:湖北省宜昌市大学路8号三峡大学机械与动力学院M1409室(443002),E-mail:zhangcy@ctgu.edu.cn     E-mail: zhangcy@ctgu.edu.cn
引用本文:   
张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
ZHANG Cong-yang, LI Zhi-rui, FANG dong, YE Yong-sheng, YE Xi-cong, WU Hai-hua. Tensile behavior and plastic deformation mechanism of SiCp/AZ91D magnesium matrix nanocomposites at room temperature. Journal of Materials Engineering, 2020, 48(4): 108-115.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000665      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/108
[1] 赵浩峰,范晋平,王玲. 镁合金及其加工技术[M]. 北京:化学工业出版社,2016. ZHAO H F, FAN J P, WANG L. Magnesium alloy and its processing technology[M]. Beijing:Chemical Industry Press,2016.
[2] BOHLEN J, CHMELIK F, DOBRON P, et al. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31[J]. Journal of Alloys and Compounds, 2004(1/2),378:207-213.
[3] 陈振华,夏伟军,程永奇,等. 镁合金织构与各向异性[J]. 中国有色金属学报, 2005, 15(1):1-11. CHEN Z H, XIA W J, CHENG Y Q, et al. Texture and anisotropy in magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(1):1-11.
[4] 张丁非,戴庆伟,胡耀波,等.镁合金板材轧制成型的研究进展[J].材料工程,2009(10):85-90. ZHANG D F, DAI Q W, HU Y B, et al. Progress in the research on rolling format ion of magnesium alloy sheet[J].Journal of Materials Engineering, 2009(10):85-90.
[5] JÄGER A,LUKÁC P, GÄRTNEROVÁ V, et al. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures[J]. Journal of Alloys and Compounds, 2004, 378(1/2):184-187.
[6] GOH C S, WEI J, LEE L C, et al. Ductility improvement and fatigue studies in Mg-CNT nanocomposites[J]. Composites Science and Technology, 2008,68(6):1432-1439.
[7] XIANG S L, GUPTA M, WANG X J, et al. Enhanced overall strength and ductility of magnesium matrixcomposites by low content of graphene nanoplatelets[J].Composites:Part A,2017,100:183-193.
[8] PARAMSOTHY M, CHAN J, KWOK R, et al. Nanoparticle interactions with the magnesium alloy matrix during physicaldeformation:Tougher nanocomposites[J]. Materials Chemistry and Physics, 2012,137(2):472-482.
[9] LAN J, YANG Y, LI X C. Microstructure and microhardness of SiC reinforced nanoparticles magnesium composites fabricated by ultrasonic method[J].Materials Science and Engineering:A, 2004, 386:284-290.
[10] 刘世英,李文珍,贾秀颖,等. 纳米SiC颗粒增强AZ91D复合材料的制备及性能[J]. 稀有金属材料与工程, 2010, 39(1):134-138. LIU S Y, LI W Z, JIA X Y, et al. Preparation and properties of nano-sized SiC particles reinforced AZ91D magnesium matrix composites[J]. Rare Metal Materials and Engineering, 2010, 39(1):134-138.
[11] 赵福泽,朱绍珍,冯小辉,等. 高能超声分散纳米晶须的数值和物理模拟[J].材料工程,2016,44(7):13-18. ZHAO F Z, ZHU S Z, FENG X H, et al. Numerical and physical simulations of nano-whiskers' dispersion under high intensity ultrasonic[J]. Journal of Materials Engineering,2016,44(7):13-18.
[12] NIE K B, WANG X J, WU K, et al. Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration[J]. Materials Science and Engineering:A, 2011, 528(29/30):8709-8714.
[13] NIE K B, WANG X J, WU K, et al. Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration[J]. Materials Science and Engineering:A, 2012, 540:123-129.
[14] 张从阳,冯荣宇,李文珍. 热处理对挤压铸造n-SiCp/AZ91D镁基复合材料组织与力学性能的影响[J]. 稀有金属材料与工程,2015,44(2):463-468. ZHANG C Y, FENG R Y, LI W Z. Effect of heat treatment on microstructure and mechanical properties of squeeze cast n-SiCp/AZ91D magnesium matrix composites[J]. Rare Metal Materials and Engineering, 2015,44(2):463-468.
[15] 何广进,李文珍. 纳米颗粒分布对镁基复合材料强化机制的影响[J].复合材料学报,2013,30(2):105-110. HE G J, LI W Z. Influence of nanoparticle distribution on the strengthening mechanism of magnesium matrix composites[J].Acta Materiae Compositae Sinica,2013, 30(2):105-110.
[16] NIEK B, WANG X J,WU K, et al. Effect of ultrasonic vibration and solution heat treatment on microstructures andtensile properties of AZ91 alloy[J]. Materials Science and Engineering:A, 2011, 528(25/26):7484-7487.
[17] ZHENG M Y, WU K, YAO C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites[J]. Materials Science and Engineering:A, 2001, 318:50-56.
[18] YU B Y, BAO C L, SONG H W,et al. Microstructure and mechanical properties of AZ91D extruded tube[J]. Acta Metallurgica Sinica (English Letters), 2006, 19(3):203-208.
[19] NIE K B, WANG X J, XU F J,et al. Microstructure and tensile properties of SiC nanoparticles reinforced magnesium matrix composite prepared by multidirectional forging under decreasing temperature conditions[J]. Materials Science and Engineering:A, 2015, 639:465-473.
[20] KOIKE J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metallurgical and Materials Transactions A, 2005,36(7):1689-1696.
[21] 杨续跃,张雷. 镁合金温变形过程中的孪生及孪晶交叉[J]. 金属学报, 2009, 45(11):1303-1308. YANG X Y, ZHANG L. Twinning and twin intersection in AZ31 Mg alloy during warm deformation[J]. Acta Metallurgica Sinica, 2009, 45(11):1303-1308.
[22] WANG X J, HU X S, LIU W Q, et al. Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites[J]. Materials Science and Engineering:A,2017, 682:491-500.
[23] YOO M H, AGNEW S R, MORRIS J R, et al. Non-basal slip systems in HCP metals and alloys:source mechanisms[J]. Materials Science and Engineering:A, 2001,319/321:87-92.
[24] 于永泗,齐名. 机械工程材料[M]. 大连:大连理工大学出版社,2012. YU Y S,QI M. Mechanical engineering materials[M]. Dalian:Dalian University of Technology Press, 2012.
[25] CHRISTIAN J W, MAHAJAN S. Deformation twinning[J]. Progress in Materials Science, 1995, 39(1):1-157.
[26] ROBSONJ D, STANFORD N, BARNETT M R. Effect of particles in promoting twin nucleation in a Mg-5wt.%Zn alloy[J].Scripta Materialia,2010, 63(8):823-826.
[27] 詹美艳,李春明,尚俊玲. 镁合金的塑性变形机制和孪生变形研究[J]. 材料导报,2011,25(2):1-5. ZHAN M Y, LI C M, SHANG J L. Investigation of the plastic deformation mechanism and twinning of magnesium alloys[J]. Materials Review, 2011,25(2):1-5.
[28] REED-HILL R E, ROBERTSON W D. Additional modes of deformation twinning in magnesium[J]. Acta Metallurgica, 1957, 5(12):717-727.
[29] WANG Y N, HUANG J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Materialia,2007,55(3):897-905.
[30] MOROZUMI S, KIKUCHI M, YOSHINAGA H. Electron-microscope observation in and around twins in magnesium[J]. Transactions of the Japan Institute of Metals, 1976, 17(3):158-164.
[31] 陈振华,杨春花,黄长清,等.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113. CHEN Z H, YANG C H, HUANG C Q, et al.Investigation of the twinning in plastic deformation of magnesium alloy[J]. Materials Review, 2006,20(8):107-113.
[32] NAVE M D, BARNETT M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta Materialia, 2004, 51(9):881-885.
[1] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[2] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[3] 陈挺, 凌展翔, 王敏, 孔谅. 镀锌钢的液态金属脆现象及其在电阻点焊过程中的表现[J]. 材料工程, 2020, 48(4): 89-99.
[4] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[5] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[6] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[7] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[8] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[9] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[10] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[11] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[12] 屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
[13] 许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
[14] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[15] 郭卫, 孔德军. 激光退火对1Cr5Mo钢焊接接头热拉伸性能的影响[J]. 材料工程, 2018, 46(2): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn