Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 112-119    DOI: 10.11868/j.issn.1001-4381.2019.000677
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响
赵辉1, 赵菲1, 杨长龙2, 韩钰3, 靳东1, 李红英1
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 国网辽宁省电力有限公司沈阳供电公司, 沈阳 110042;
3. 全球互联网能源研究院有限公司, 北京 102209
Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys
ZHAO Hui1, ZHAO Fei1, YANG Chang-long2, HAN Yu3, JIN Dong1, LI Hong-ying1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. State Grid Shenyang Electric Power Supply Company, Shenyang 110042, China;
3. Global Energy Interconnection Research Institute, Beijing 102209, China
全文: PDF(3341 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过透射电镜(TEM)和扫描透射电镜(STEM)以及硬度、电导率测试等方法系统研究了时效处理对Al-Zr-Sc三元合金以及Al-Zr-Sc-Er四元合金显微组织和性能的影响。结果表明:对于Al-Zr-Sc合金,增加Sc含量,可显著提高合金时效响应速率、峰值硬度和热稳定性;增加Zr含量,显著提高了合金硬度和热稳定性,但会降低电导率。在Al-Zr-Sc合金中添加Er,进一步提高了合金的时效响应速率,促进了Zr,Sc的脱溶析出。Er与Zr,Sc形成具有核-双壳结构的Al3(Er,Sc,Zr)相,明显改善合金的硬度和电导率。经300℃单级时效,实验合金硬度较高,但电导率相对较低;经400℃单级时效,实验合金时效响应速率加快,电导率明显提高,但硬度显著下降;经300℃/24 h+400℃的双级时效实验合金可获得电导率、强度和热稳定性的良好匹配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵辉
赵菲
杨长龙
韩钰
靳东
李红英
关键词 Al-Zr-Sc(-Er)合金时效显微组织电导率    
Abstract:The effects of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys were investigated by TEM, STEM, hardness tests and electric conductivity tests systematically. Results show that the aging response speed, peak hardness and thermal stability of Al-Zr-Sc alloys are significantly improved by increasing Sc content, and increasing Zr content improves hardness and thermal stability, while decreasing the electric conductivity. Adding Er in Al-Zr-Sc alloys improves the aging response speed and promotes the precipitation of Zr and Sc. Hardness and electrical conductivity of alloy are improved, owing to the formation of Al3(Er, Sc, Zr) phases with core-double shell structure. For experimental alloys, one-stage aging at 300℃ provides the higher hardness but lower electric conductivity; one-stage aging at 400℃ can increase the aging response speed and electrical conductivity but decrease hardness; two-stage aging at 300℃/24 h+400℃ can lead to better match of conductivity, tensile strength and heat resistance.
Key wordsAl-Zr-Sc(-Er) alloy    aging    microstructure    electric conductivity
收稿日期: 2019-07-19      出版日期: 2020-05-28
中图分类号:  TG166.3  
通讯作者: 李红英(1963-),女,教授,博士,主要从事金属材料方面的研究,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学材料科学与工程学院(410083),E-mail:lhying@csu.edu.cn     E-mail: lhying@csu.edu.cn
引用本文:   
赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
ZHAO Hui, ZHAO Fei, YANG Chang-long, HAN Yu, JIN Dong, LI Hong-ying. Effect of aging treatment on microstructure and properties of Al-Zr-Sc(-Er) alloys. Journal of Materials Engineering, 2020, 48(5): 112-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000677      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/112
[1] 胡飞雄,何广春. 南方电网西电东送节能减排效益分析[J].电力系统自动化, 2014, 38(17):20-23. HU F X, HE G C. Energy-saving and emission reduction benefit analysis on west-to-east transmission project of China southern power grid[J]. Automation of Electric Power Systems, 2014, 38(17):20-23.
[2] 陈迪,李成栋,赵晓东. 铝合金在电力传输领域的研究及应用[J]. 材料导报, 2013, 27(8):145-147. CHEN D, LI C D, ZHAO X D. Research and application of aluminum alloy in the field of power transmission[J]. Materials Review, 2013, 27(8):145-147.
[3] 贾艳军,杨亚军,袁红梅. 铝合金导线在我国的应用及发展[J].有色金属加工, 2017, 46(3):9-10. JIA Y J, YANG Y J, YUAN H M. Application and development of aluminum alloy conductor in China[J]. Nonferrous Metals Processing, 2017, 46(3):9-10.
[4] GAO T, CEGUERRA A, BREEN A, et al. Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al-(Si-)Zr alloys[J]. Journal of Alloys and Compounds, 2016, 674(7):125-130.
[5] LOHAR A K, MONDA B, RAFAJA D, et al. Microstructural investigations on as-cast and annealed Al-Sc and Al-Sc-Zr alloys[J]. Materials Characterization, 2009, 60(11):1387-1394.
[6] 聂祚仁,文胜平,黄晖,等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21(10):2361-2368. NIE Z R, WEN S P, HUANG H, et al. Research progress of Er-containing aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2361-2368.
[7] FULLER C B, SEIDMAN D N, DUNAND D C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures[J]. Acta Materialia, 2003, 51(9):4803-4814.
[8] ZHANG J Y, ZHAO H T, ZHU J H, et al. Relationship between electrical resistivity and Al3(Zr,Sc) core-shell dispersoids of Al-Zr-Sc electrical transmission cable:modeling and experimental results[J]. Electric Power Systems Research, 2019, 168(3):1-7.
[9] LIU L, JIANG J T, ZHANG B, et al. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing[J]. Journal of Materials Science and Technology, 2019, 35(6):962-971.
[10] LI H Y, BIN J, LIU J J, et al. Precipitation evolution and coarsening resistance at 400℃ of Al microalloyed with Zr and Er[J]. Scripta Materialia, 2012, 67(1):73-76.
[11] WEN S P, GAO K Y, HUANG H, et al. Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574(10):92-97.
[12] JIA Z H, RØYSET J, SOLBERG J K, et al. Formation of precipitates and recrystallization resistance in Al-Sc-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1866-1871.
[13] MARQUIS E A, SEIDMAN D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11):1909-1919.
[14] 戴晓元,夏长清,彭小敏. 7×××铝合金退火过程中二次Al3(Sc,Zr)粒子的析出行为[J]. 中国有色金属学报, 2010, 20(3):451-455. DAI X Y, XIA C Q, PENG X M. Precipitation behavior of Al3(Sc, Zr) secondary particles in 7×××aluminum alloys during annealing[J]. The Chinese Journal of Nonferrous Metals,2010, 20(3):451-455.
[15] VO N Q, DUNAND D C, SEIDMAN D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er[J]. Acta Materialia, 2014, 63(1):73-85.
[16] GAO Z H, LI H Y, LAI Y Y. Effect of minor Zr and Er on microstructure and mechanical properties of pure aluminum[J]. Materials Science and Engineering:A, 2013, 580(9):92-98.
[17] KANG W, LI H Y, ZHAO S X. Effects of homogenization treatments on the microstructure evolution, microhardness and electrical conductivity of dilute Al-Sc-Zr-Er alloys[J]. Journal of Alloys and Compounds, 2017, 704(5):683-692.
[18] TOLLEY A, RADMILOVIC V, DAHMAN U. Segregation in Al3(Sc,Zr) precipitates in Al-Sc-Zr alloys[J]. Scripta Materialia, 2005, 52(7):621-625.
[19] KRUG M E, DUNAND D C, SEIDMAN D N. Effects of Li addition on precipitation-strengthen Al-Sc and Al-Sc-Yb alloys[J]. Acta Materialia, 2011, 59(2):1700-1715.
[20] FROST H J, ASHBY M F. Deformation-mechanism maps:the plasticity and creep of metals and ceramics[M]. Oxford, UK:Pergamon Press, 1982.
[21] BOOTH-MORRISON C, DUNAND D C, SEIDMAN D N. Coarsening resistance at 400℃ of precipitation-strengthened Al-Zr-Sc-Er alloys[J]. Acta Materialia, 2011, 59(7):7029-7042.
[1] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[6] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[7] 刘闪光, 李国爱, 罗传彪, 李海超, 陆政, 戴圣龙. Sc元素对ZL205A合金组织和力学性能的影响[J]. 材料工程, 2020, 48(1): 84-91.
[8] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[9] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[12] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[13] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[14] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[15] 马龙腾, 刘正东, 白银. 9Cr3W3Co钢高温时效脆化现象与改进方法[J]. 材料工程, 2019, 47(3): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn