Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 100-106    DOI: 10.11868/j.issn.1001-4381.2019.000684
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Mg22Y2Ni10Cu2储氢合金的放氢性能
孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平
内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
Dehydrogenation properties of Mg22Y2Ni10Cu2 hydrogen storage alloy
SUN Hao, JIA Kai-bo, ZHAO Feng-guang, ZHANG Yang-huan, REN Hui-ping
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(3945 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用中频感应炉冶炼了添加少量Y和Cu的Mg2Ni型储氢合金,利用X射线衍射仪、扫描电子显微镜、能谱分析仪、透射电子显微镜对合金不同状态下的物相结构与显微组织进行测试,借助基于Sieverts法的吸放氢设备和差示扫描量热仪测试合金的放氢性能,研究合金在等温与连续加热条件下的放氢过程和放氢活化能,并讨论相应的放氢机制。结果表明:铸态合金呈片层状组织,其主相为Mg2Ni,YMgNi4,并含有少量Mg;在前6次放氢中,每次达到90%最大放氢量所用时间分别为446,418,360,354,342 s和336 s;对等温放氢曲线拟合的结果表明:合金脱氢过程是以随机成核和随后生长的机制完成;等温放氢时的活化能Ea=67.6 kJ/mol,而连续升温时的放氢活化能Ea=69.5 kJ/mol;同时发现,505 K和512 K为Mg2NiH4相的晶型转变点,且Mg2NiH4比MgH2先行放氢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙昊
贾凯波
赵凤光
张羊换
任慧平
关键词 Mg22Y2Ni10Cu2储氢合金放氢性能活化能随机成核随后生长    
Abstract:The Mg2Ni-type hydrogen storage alloy with the addition of a little Y and Cu was prepared by medium frequency induction melting. The phase composition and microstructure were characterized by X-ray diffractometer, scanning electron microscope, energy dispersive spectrum analyzer and transmission electron microscope. Hydrogen desorption performances of the alloy were measured by hydrogen absorption/desorption equipment based on the Sieverts method and high pressure differential scanning calorimeter. The activation energy and corresponding mechanism of dehydrogenation under isothermal and continuous heating conditions were investigated. The results show that the as-cast alloy presents lamellar-shaped structures which are composed of Mg2Ni and YMgNi4 as the main phase and small amount of Mg. The alloy exhibits good activation properties in which the time taken to reach 90% of the maximum dehydrogenation content is 446, 418, 360, 354, 342 s and 336 s in the first six isothermal hydrogen desorption cycles respectively. The fitting results of the hydrogen desorption kinetics indicate that the dehydrogenation is governed by random nucleation and subsequent growth mechanism. The activation energy of the isothermal hydrogen desorption of the alloy is Ea=67.6 kJ/mol. Comparatively, the activation energy of hydrogen evolution at continuous heating is Ea=69.5 kJ/mol. At the same time, it is found that crystal transitions of Mg2NiH4 are identified to be triggered at 505 K and 512 K. Furthermore, dehydrogenation of Mg2NiH4 starts more easily than that of MgH2.
Key wordsMg22Y2Ni10Cu2 hydrogen storage alloy    hydrogen desorption performance    activation ene-rgy    random nucleation    subsequent growth
收稿日期: 2019-07-22      出版日期: 2020-09-17
中图分类号:  TG146.2  
通讯作者: 任慧平(1963-),男,教授,博士,研究方向为材料的组织与性能控制,联系地址:内蒙古包头市阿尔丁大街7号内蒙古科技大学材料与冶金学院(014010),E-mail:renhuiping@sina.com     E-mail: renhuiping@sina.com
引用本文:   
孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
SUN Hao, JIA Kai-bo, ZHAO Feng-guang, ZHANG Yang-huan, REN Hui-ping. Dehydrogenation properties of Mg22Y2Ni10Cu2 hydrogen storage alloy. Journal of Materials Engineering, 2020, 48(9): 100-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000684      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/100
[1] FU H, WU W S, DOU Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5wt%Ni alloys with dendrite interface[J].Journal of Power Sources, 2016, 320:212-221.
[2] OH S, KIM M, EOM K, et al. Design of Mg-Ni alloys for fast hydrogen generation from seawater and their application in polymer electrolyte membrane fuel cells[J].International Journal of Hydrogen Energy, 2016, 41(10):5296-5303.
[3] 孙昊,冯佃臣,任慧平,等.球磨Mg22Y2Ni10Cu2+x%Ni复合材料储氢性能研究[J].稀有金属,2018,42(1):14-20. SUN H, FENG D C, REN H P, et al. Hydrogen storage properties of Mg22Y2Ni10Cu2 +x% Ni composite prepared by ball milling[J]. Chinese Journal of Rare Metals, 2018, 42(1):14-20.
[4] 伟伟,田晓,特古斯,等.机械合金化MlNi3.55Co0.75Mn0.4Al0.3/Mg复合储氢合金的相结构和电化学性能[J].稀土,2015,36(1):69-73. WEI W, TIAN X, TE G S, et al. Phase structure and electrochemical properties of MlNi3.55Co0.75Mn0.4Al0.3/Mg composite alloys prepared by mechanical alloying[J].Chinese Rare Earths, 2015,36(1):69-73.
[5] 张云龙,李金山,张铁邦,等.熔体快淬Zr0.9Ti0.1V2.2合金的微结构与储氢性能[J].稀有金属材料与工程,2015,44(6):1465-1468. ZHANG Y L, LI J S, ZHANG T B, et al. Microstructure and hydrogen storage properties of melt-spun Zr0.9Ti0.1V2.2[J]. Rare Metal Materials and Engineering, 2015,44(6):1465-1468.
[6] GU H, ZHU Y F, LI L Q. Hydrogen storage properties of Mg-Ni-Cu prepared by hydriding combustion synthesis and mechanical milling (HCS + MM)[J]. International Journal of Hydrogen Energy, 2009, 34(6):2654-2660.
[7] 张羊换,杨泰,吴征洋,等.RE(RE=Nd,Sm,Pr)部分替代A2B7型合金电化学贮氢性能的影响[J].稀有金属,2015,39(1):1-10. ZHANG Y H, YANG T, WU Z Y, et al. Electrochemical hydrogen storage performance of A2B7-type electrode alloys with partial substitution of RE (RE=Nd,Sm,Pr) for La[J]. Chinese Journal of Rare Metals, 2015, 39(1):1-10.
[8] LV Y J, ZHANG B, WU Y. Effect of Ni content on microstructural evolution and hydrogen storage properties of Mg-xNi-3La (x=5,10,15,20 at.%) alloys[J]. Journal of Alloys and Compounds, 2015, 641:176-180.
[9] HOU X J, HU R, ZHANG T B, et al. Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3[J]. Journal of Power Sources, 2016, 306:437-447.
[10] SONG W J, LI J S, ZHANG T B, et al. Microstructure and tailoring hydrogenation performance of Y-doped Mg2Ni alloys[J]. Journal of Power Sources, 2014, 245:808-815.
[11] SI T Z, MA Y, LI Y T, et al. Solid solution of Cu in Mg2NiH4 and its destabilized effect on hydrogen desorption[J]. Materials Chemistry and Physics,2017,193:1-6.
[12] HSU F K, HSU C W, CHANG J K, et al. Structure and hydrogen storage properties of Mg2Cu1-xNix(x=0-1) alloys[J]. International Journal of Hydrogen Energy,2010,35(24):13247-13254.
[13] MEZBAHUL-ISLAM M, MAMOUN M. A critical thermodynamic assessment of the Mg-Ni,Ni-Y binary and Mg-Ni-Y ternary systems[J]. Calphad, 2009, 33:478-486.
[14] SUN H, FENG D C, ZHANG Y H, et al. Gas hydrogen absorption and electrochemical properties of Mg24Ni10Cu2 alloys improved by Y substitution, ball milling and Ni addition[J]. International Journal of Hydrogen Energy, 2019, 44:5382-5388.
[15] ZHU M, GAO Y, CHE X Z, et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x[J]. Journal of Alloys and Compounds, 2002, 330:708-713.
[16] OUYANG L Z, DONG H W, ZHU M. Mg3Mm compound based hydrogen storage materials[J]. Journal of Alloys and Compounds, 2007, 446/447:124-128.
[17] YUAN Z M, YANG T, BU W G, et al. Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy[J]. International Journal of Hydrogen Energy,2016,41(14):5994-6003.
[18] 张国芳,翟亭亭,胡锋,等.纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响[J].材料工程,2018,46(7):151-156. ZHANG G F, ZHAI T T, HU F, et al. Effect of different sizes of nano CuO catalysts on hydrogen storage properties of Mg2Ni based composites[J]. Journal of Materials Engineering, 2018, 46(7):151-156.
[19] WU Z W, LI Y T, ZHANG Q A. Catalytic effect of nanostructured Mg2Ni and YH2/YH3 on hydrogen absorption-desorption kinetics of the Mg-Cu-H system[J]. Journal of Alloys and Compounds, 2016, 685:639-646.
[20] ZHANG J, ZHOU D W, HE L P, et al. First-principles investigation of Mg2Ni phase and high/low temperature Mg2NiH4 complex hydrides[J]. Journal of Physics and Chemistry of Solids, 2009,70:32-39.
[21] CHITSAZKHOYI L, RAYGAN S, POURABDOLI M. Mechanical milling of Mg,Ni and Y powder mixture and investigating the effects of produced nanostructured MgNi4Y on hydrogen desorption properties of MgH2[J]. International Journal of Hydrogen Energy, 2013, 38(16):6687-6693.
[22] ZHANG Y H, LI Y Q, SHANG H W, et al. Hydrogen storage performance of the as-milled Y-Mg-Ni alloy catalyzed by CeO2[J]. International Journal of Hydrogen Energy, 2018, 43(3):1643-1650.
[1] 张国芳, 翟亭亭, 胡锋, 侯忠辉, 张羊换, 许剑轶. 纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响[J]. 材料工程, 2018, 46(7): 151-156.
[2] 宋海硕, 周登凤, 张道海, 郭建兵. 短玻纤增强尼龙10T复合材料的热氧老化性能[J]. 材料工程, 2017, 45(12): 43-49.
[3] 林婷惠, 曹长林, 陈庆华, 钱庆荣, 黄宝铨, 夏新曙, 林新土, 肖荔人. r-PTFE对PBT非等温结晶动力学的影响[J]. 材料工程, 2016, 44(3): 92-96.
[4] 杨中正, 姚亚刚, WONG C P, 陆跃军. 微沸法合成纳米莫来石及活化能的研究[J]. 材料工程, 2015, 43(6): 26-30.
[5] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[6] 庄园园, 司小娟, 陈建军, 程丹丹, Jeong Cheol Kim, 王依民. UHMWPP/UHMWPE合金纤维结晶能力与结晶活化能研究[J]. 材料工程, 2008, 0(10): 239-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn